		_indiavic	lya.com		
46.	 X and Y are two crystalline substances both having cubic unit cells. The ratio of molecu masses is 1 : 2. The ratio of 'a' parameters is 1 : 2. The ratio of number of formula units (Z 1 : 4. The ratio of their densities is 				
	1)4:1	2) 1 : 1	3) 1 : 2	4) 1 : 4	
47.	The complex [Co(N	$\left[H_3\right]_6^{3+}$ is an inner orb	ital complex whereas th	$e\left[CoF_{6}\right]^{3-}$ is an outer orbital	
	complex. The numb	per of unpaired electron	ns in these two complex	xes are respectively	
	1) Zero and 4	2) 4 and 4	3) 6 and 2	4) 3 and 4	
48.	A hydrocarbon with n	nolecular formula $\mathrm{C_4H_6}$ 1	reacts with bromine read	lily and gives a red precipitate	
	with ammoniacal Cu	¹ ₂ Cl ₂ . On treatment with	n dilute H ₂ SO ₄ Contain	ing HgSO ₄ gives 2- butanone.	
	The hydrocarbon is				
	1) 2- Butyne	2) 1 – Butene	3) 1- butyne	4) Cyclobutene	
49.	9. In $C \stackrel{a}{=} C = C \stackrel{b}{=} C = C \stackrel{c}{=} C \stackrel{d}{=} C$, the strongest C - C single bond is				
	1) b	2) a	3) c	4) d	
50.	0. One molal solution of K_x [Fe (CN) ₆] is isotonic with 4 molal urea solution. The degree of dissociation of potassium Iron cyanide is one. Then the value of 'x' is				
	1) 4	2) 3	3) 2	4) 1	
51.	The standard poten	tial for the electrode M	${nO_4^-}/{MnO_2}$ in solutio	n is	
	Given $E^{o}_{MnO_{4}^{-}/Mn^{+2}}$	=1.51V and $E_{MnO_2/M}^{o}$	$_{n^{+2}} = 1.23V$		
	1) - 1.70 V	2) + 1.1 V	3) + 1.70 V	4) - 1.1V	
 52. The limiting molar conductivities [№] for NaCl, KBr and KCl are 126, 15 respectively. The ⁰ for NaBr is : 			126, 152 and 150Scm ² mol ⁻¹		
	1) 278 S cm ² mol ⁻¹	2) 176 S cm ² mol ⁻¹	3) 128 S cm ² mol ⁻¹	4) 302 S cm ² mol ⁻¹	
ROUGH					
-					

53.	NaCl $\xrightarrow{H_2SO_4}$ Na	$\frac{\text{indiavic}}{\text{HSO}_4 \xrightarrow{\text{NaCl}} \text{Na}_2\text{SO}}$	ya.com	is	
	1) HCl is obtained in l	poth steps	2) $T_1 < T_2$		
	3) HCl is dried using of	conc H_2SO_4	4) All of these		
54.	Number of configur	ational isomers for $(C$	$(H_3)_{\gamma} CH.CH.Cl.CH$	= CHCl	
	1) 2	2) 3	3) zero	4) 4	
55.	Emf of the cell Pt $Cl_2/Cl^- = 1.36V$, H_{2} (1 atm) / H^{+} (0.	01) // Cl ₂ (1atm) / Cl ⁻	(0.1M), Pt. Given <i>E</i> ° of	
	1) + 1.36V	2) + 1.54V	3) + 1.48V	4) + 1.12V	
56.	The electron affinit	y values of 3rd period	elements A, B, C and I) are respectively -135, -60, -	
	200 and –348 KJ m	ole^{-1} . The outer config	guration of element 'B'	is	
	1) $3s^2 3p^1$	2) $3s^2 3p^4$	3) $3s^2 3p^3$	4) $3s^2 3p^2$	
57.	7. In a face centered cubic lattice, atom 'A' occupies the corner positions and atom 'B' occupies the face center positions. If one atom of B is missing from one of the face centered points formula of the compound is			itions and atom 'B' occupies the face centered points. The	
	1) <i>A</i> ₂ <i>B</i>	2) <i>A</i> ₂ <i>B</i> ₅	3) <i>AB</i> ₂	4) A_2B_2	
58.	In the roasting of iron pyrites, equivalent weight of iron pyrites is				
	1) $\frac{M}{11}$	2) $\frac{11M}{10}$	3) $\frac{M}{6}$	4) $\frac{6M}{5}$	
59.	• $CH_2 = CH - CH(Br) - CH_3 \xrightarrow{\text{alc.KOH}} X(\text{major}) \cdot X'$ is				
	1) $CH_2 = C = CH$ -	- <i>CH</i> ₃	2) $CH_2 = CH - CH$	$H = CH_2$	
	3) $CH_3 - CH = CH - CH_3$		4) $CH_2 = CH - CH_2 - CH_3$		
60.	Bond length and bo	nd angle in ozone mole	cule is/are		
	1) 119°, 121pm	2) 117°, 148 pm	3) 117°, 128pm	4) 111°, 128pm	
KUUGH					

			CH ₃		
		н —	Cl		
		Cl—	н		
			C_2H_5		
	1) 2S, 3R	2) 3R, 2S	3) 2R, 3R	4) 2S, 3S	
62.	'X' along with liquid in 'X' is	l oxygen provide a trem	endous thrust in rock	ets. Oxidation state of nitrogen	
	1) - 2	2) - 3	3) - 1	4) + 1	
63.	The number of $p\pi$	$-d\pi$ bonds present in	XeO_3 and XeO_4 mol	lecules respectively	
	1) 3, 4	2) 4, 2	3) 2, 3	4) 3, 2	
64.	1, 3 butadiene and styrene on polymerisation give				
	1) Bakelite	2) Terylene	3) Buna - S	4) Teflon	
65.	To a 25ml H_2O_2 sol	lution, excess acidified s	olution of KI is added	. The iodine liberated required	
	20ml of 0.3M $Na_2S_2O_3$ solution. Strength of H_2O_2 solution is				
	1) 1.344 gr/litre	2) 3.244 gr/litre	3) 5.4 gr/litre	4) 4.08 gr/litre	
66.	The gas evolved on heating $(NH_4)_2 Cr_2O_7$ is				
	1) NH ₃	2) N ₂	3) N ₂ O	4) O ₂	
67.	When HNO_3 oxidizes I_2 , the change in oxidation number of iodine is				
	a) 0 to + 4	2) 0 to -5	3) 0 to +5	4) 0 to +3	
68.	Gabriel phthalimide synthesis is used for the preparation of				
	a) Primary aromatic amine		2) Primary aliphatic amine		
	c) Secondary amine		4) Tertiary amine		

80.). The molecular formula of carbon compound 'X' is $C_4H_{10}O$. It liberates hydrogen gas with Na					
	metal and gives turbidity immediately with Lucas Reagent. If the vapours of 'X' are passed over hot copper the product obtained is					
	1) $CH_3 - CH_2 - O - O$	$CH_2 - CH_3$	2) $CH_{3}CH_{2} - CH_{2}$	-СНО		
	3) $\begin{array}{c} CH_3 - C - CH_2 - CH_3 \\ \parallel \\ O \end{array}$		4) $CH_3 - C = CH_2$ $ CH_3$			
81.	The value of K_P for the equillibrium of the reaction $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ is 2. Calculate (
	percentage dissociati	ion of N_2O_4 at a press	ure of 0.5 atm			
	1) 71	2) 50	3) 25	4) 88		
82.	The pH of $10^{-10} M Mg (OH)_2$ solution will be					
	1) 10	2) 6	3) 4	4) 7.001		
83.	Consider the following	ng reactions at 1000°C	,			
	1) $Zn_{(s)} + \frac{1}{2}O_2(g) \longrightarrow ZnO_{(s)}$; $\Delta G^\circ = -360 KJ mole^{-1}$					
	2) $C_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}; \Delta G^{\circ} = -460 KJ mole^{-1}$					
	Choose the correct statement at $1000^{\circ}C$					
	1) Zinc can be oxidised	d by CO	2) Zinc oxide can be reduced by C			
04	3) Zinc can be reduced by CO 4) Zinc can be reduced by C			ed by C		
84.	1) Cu_2S and Cu_2O	2) Cu_2O and FeS	3) Cu_2S and FeO	4) Cu_2S and FeS		
85.	85. In an adsorption experiment a graph between $\log \frac{x}{m}$ vs log P is found to be linear with			und to be linear with a slope		
	of 45°. The Y - inter	cept was found to be 0	.3010. What is $\frac{x}{x}$ if p	ressure is 6 bar (tan $45^\circ = 1$		
	and $0.3010 = \log 2$)		m			
	1) 0.6	2) 2.8	3) 6	4) 12		
	ROUGH					

[indiav	idya.com	1		
86.	0.303 grams of an organic compound was an alysed for nitrogen by Kjeldahl's method. The ammonia evolved was absorbed in 50ml of 0.1N H_2SO_4 . The excess acid required 25ml of 0.1N NoOH for neutrolisation. The neutrolisation is the compound					
	1) 11 55%	2) 23 3%	3) <i>11</i> 6%	4) 18 4%		
	1) 11.3370	2) 23.370	5) 44.0%	4) 18.4%		
87.	The Vanderwa	aal's constant 'b' is	times volum	ne of the molecule		
	1) 4	2) 5	3) 2	4) 10		
88.	Which one of the following statements is correct					
	1) Chloroxylenol	is a tranquilizer	2) Sucralose is a	an antiseptic		
	3) Prontosil is an antimicrobial		4) Seconal is an	4) Seconal is an antipyretic		
89.	The number of	unpaired electrons pres	ent in the first excite	d state of chlorine atom is		
	1) 1	2) 3	3) 5	4) 2		
90.	The total numb	er of antibonding electr	ons in N_2 and O_2 m	olecules respectively is		
	1) 4, 8	2) 4, 6	3) 6, 8	4) 5, 8		
	ROUGH					