JEE Advanced Model Test

By

www.indiavidya.com

Paper-I **JEE-ADVANCE-2013-P1-Model**

IMPORTANT INSTRUCTIONS

Max Marks: 180

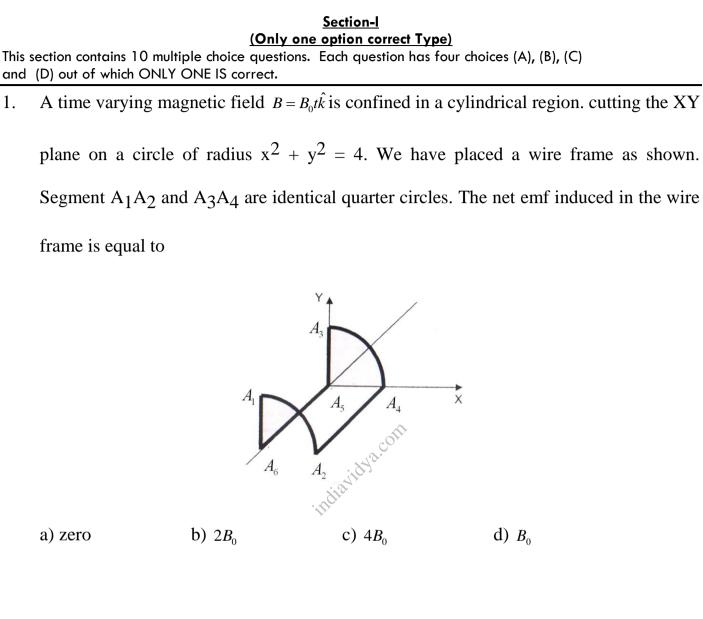
PH	YS	ICS:

Time: 3:00

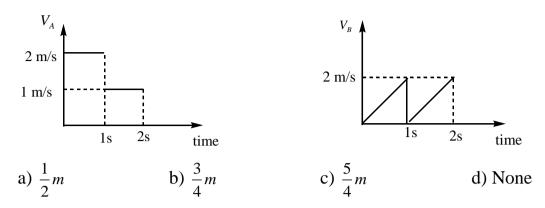
Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 10)	Questions with Single Correct Choice	2	0	10	20
Sec – II(Q.N : 11 – 15)	Questions with Multiple Correct Choice	4	-1	5	20
Sec – III(Q.N : 16 – 20)	Questions with Integer Answer Type	4	-1	5	20
Total					60

CHEMISTRY:

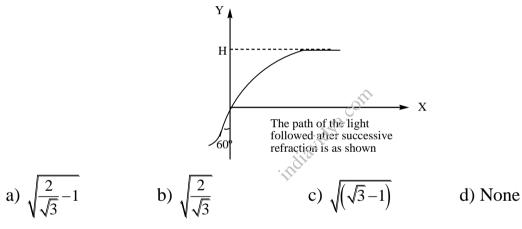
Section Question Type		+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 21 – 30)	Questions with Single Correct Choice		0	10	20
Sec – II(Q.N : 31 – 35)	(Q.N : 31 – 35) Questions with Multiple Correct Choice		-1	5	20
Sec – III(Q.N : 36 – 40)	Questions with Integer Answer Type	4	-1	5	20
Total					60
MATHEMATICS:	indra				


MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 41 – 50)	Questions with Single Correct Choice	2	0	10	20
Sec – II(Q.N : 51 – 55)	Questions with Multiple Correct Choice	4	- 1	5	20

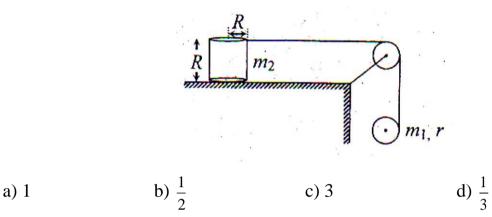

Sec – III(Q.N : 56 – 60)	Questions with Integer Answer Type	4	-1	5	20
	Total			20	60
	~				
	1 ² .01				
	Carton .				
	·Indiavidya.com				

PHYSICS

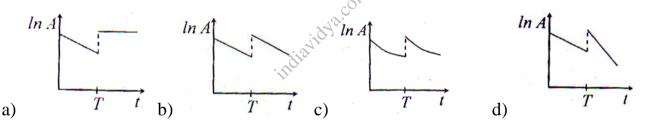

Max Marks: 60

2. Two particles A and B start moving from the same point on the X-axis. The velocity versus time graph for the particle is as shown in figure. The maximum relative separation between the two particles will be equal to

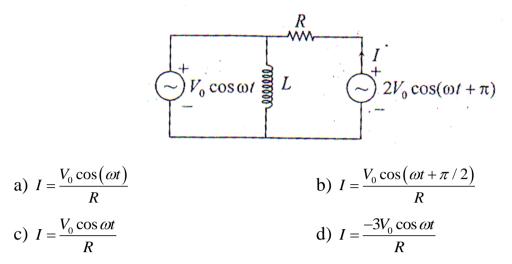
3. A ray of light is incident at the origin at an angle 60° with Y-axis as shown in figure. The refractive index is a function of y according to the relation $\mu = \frac{2}{1+y^2}$. What is the value of H, shown in figure?

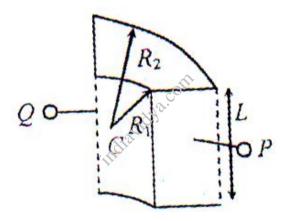


4. Dimensionally power of lens is equivalent to :


a)
$$\frac{E\sqrt{LC}}{B}$$
 b) $\frac{E}{B\sqrt{LC}}$ c) $\frac{B\sqrt{LC}}{E}$ d) $\frac{B}{E\sqrt{LC}}$

[Type text]


- 5. The potential in certain region is given as $V = 2x^2$, then the charge density of that region is
 - a) $-\frac{4x}{\varepsilon_0}$ b) $-\frac{4}{\varepsilon_0}$ c) $-4\varepsilon_0$ d) $-2\varepsilon_0$
- 6. A disc of mass m_1 radius r is released from rest in the fig shown. If the cylinder is on the verge of slipping as well as toppling then coefficient of friction between cylinder and table surface is :

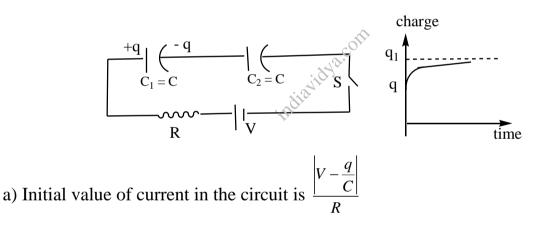

7. At time t = 0, some radioactive gas is injected into a sealed vessel. At time T, some more of the same gas is injected into the same vessel. The graph representing the variation of the logarithm of the activity A of the gas with time t is

8. The diagram shows an AC circuit with two voltage sources of same frequency. Find out the value of current I shown in the fig.

9. A resistor is formed in the shape of a hollow, quarter cylinder from a material of resistivity ρ . The length of cylinder is L, inner and outer radii are R₁ and R₂ respectively. The resistance of this resistor between the shown terminals P and Q is

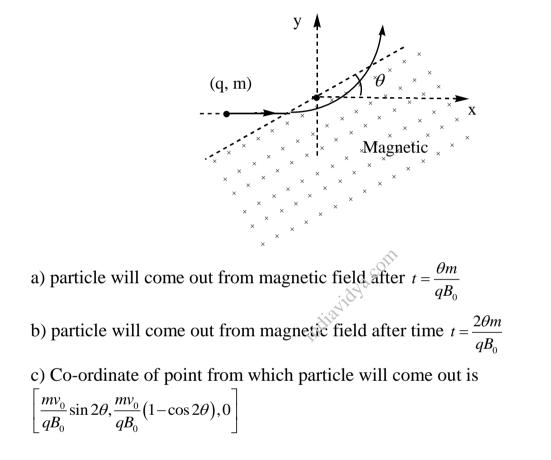
[Type text]

a)
$$\frac{2\pi\rho L}{\left(R_2^2 - R_1^2\right)}$$
 b) $\frac{2\rho\pi}{L\ln\left(\frac{R_2}{R_1}\right)}$ c) $\frac{\pi\rho}{2L\ln\left(\frac{R_2}{R_1}\right)}$ d) $\frac{\rho\pi R_1}{L(R_2 - R_1)}$


10. Standing waves are set up in a string of length 240 cm clamped horizontally at both ends. The separation between any two consecutive points where displacement amplitude is $3\sqrt{2}$ cm is 20 cm. The standing waves were set by two traveling waves of equal amplitude of 3 cm. The overtone in which the string is vibrating will be

a) 2^{nd} b) 3^{rd} c) 4^{th} d) 5^{th}

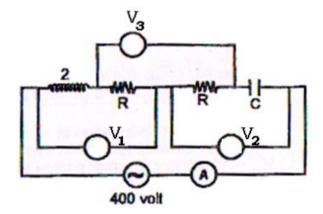
<u>Section-II</u> (One or More options correct Type)


This section contains 5 multiple choice question. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.

11. In the diagram shown, both the capacitors have the same capacitance C. One capacitor has charge +q and other is uncharged. The switch is closed at time t =0. The graph shows the variation of the charge on C₁ as a function of time. Then

[Type text]

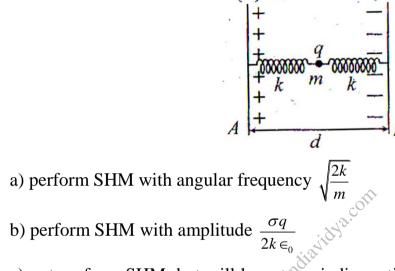
- b) Charge present in second capacitor in steady state is $\frac{CV-q}{2}$
- c) Value of q₁ in steady state is $\frac{CV+q}{2}$
- d) Heat energy will be generated in the circuit on closing the switch
- 12. A uniform magnetic field $-B_0 \hat{k}$ exists to the right of the plane $y = x \tan \theta$ as shown. At t = 0 a particle of mass m and positive charge q with velocity $v_0 \hat{i}$ enters in magnetic field at origin. Then


[Type text]

d) Co-ordinate of point from which particle will come	is $\left[\frac{mv_0}{qB_0}\sin\theta, \frac{mv_0}{qB_0}(1-\cos\theta), 0\right]$
---	---

13. In the shown circuit reading of voltmeter V_1 and V_3 are 300 volt each then choose

correct option/options if reading of ammeter is 10A :



a) $V_2 = 300 V$ b) $V_2 = 400 V$ c) $R = 10 \Omega$ d) $R = 20 \Omega$

14. Two large on conducting plates having surface charge densities $+\sigma$ and $-\sigma$, respectively, are fixed 'd' distance apart. A small test charge q of mass m is attached to two non – conducting identical springs of spring constant k as shown in the adjacent fig. The charge q is now released from rest with springs in natural length. Then q will [neglect gravity]

-**σ**)

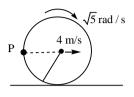
c) not perform SHM, but will have a periodic motion if charges are removed on plates as well as on m

d) remain stationary

15. A satellite close to the earth is in orbit above the equator with a period of rotation

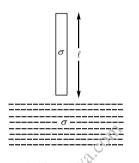
1.5hours. If it is above a point P on the equator at some time, it will be above P again after time

a) 1.5 hours


- b) 1.6 hours if it is rotating from west to east
- c) 24/17 hours if it is rotating from east to west
- d) 24/17 hours if it is rotating from west to east

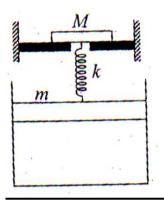
<u>Section-III</u> (Integer value correct Type)

This section contains 5 questions. The answer to each question is a single digit integer, ranging from 0 to 9 (both inclusive)


16. A metal rod AB of length L rotates with a constant angular velocity ω about an axis passing through O and normal to its length. The magnitude of emf induced between ends A and B in the absence of external magnetic field is $\frac{mL^2\omega^2}{ke}$. Hence m is mass of electron and e is charge on electron. Find the value of k.

17. The centre of mass of a disc of radius $\frac{8}{\sqrt{5}}m$ is moving with a velocity of 4 m/s on a horizontal plane. The angular velocity of the disc about it's centre is $\sqrt{5} \operatorname{rad/s}$. Find the radius of curvature of the point 'P shown in the figure in meter?

18. A uniform vertical cylinder is released from rest when its lower end just touches the liquid surface of a deep lake. Calculate maximum displacement of cylinder (in meter).


Take
$$\ell = 4m \text{ and } \frac{\sigma}{\rho} = \frac{1}{2}$$

19. A sample of radioactive nuclide A^{150} is having half life 2 hours and it produce B^{146} after emitting α particle. Initially in sample only A was present having mass 50 gm. After four hours difference in mass of sample (A + B) is x gm then value of x is.

[Type text]

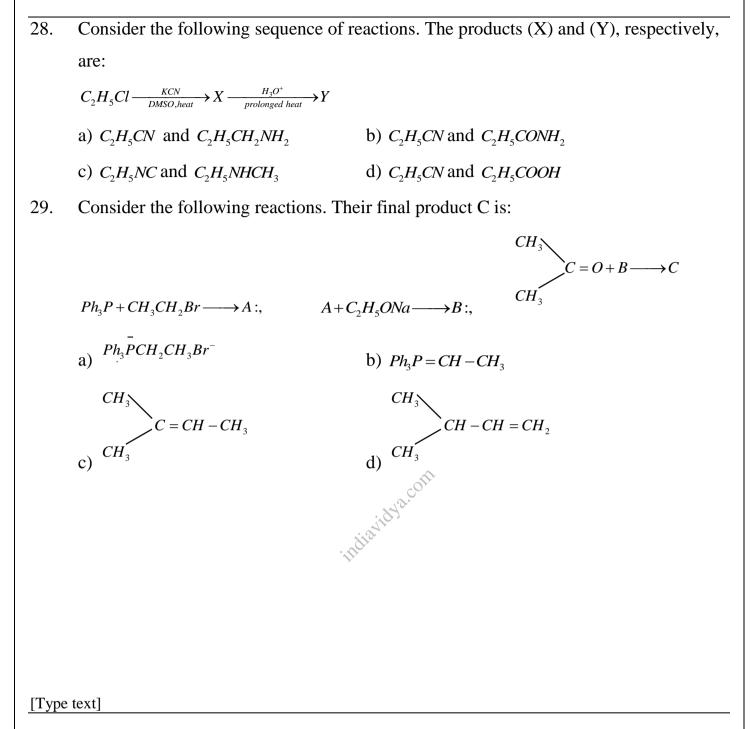
20. 0.01 moles of an ideal diatomic gas is enclosed in an adiabatic cylinder of crosssectional area A = 10^{-4} m². In the arrangement shown, a block of mass M = 0.8 kg is placed on a horizontal support, and another block of mass m = 1kg is suspended from a spring of stiffness constant k = 16 N/m. Initially, the spring is relaxed and the volume of the gas is V = 1.4 10^{-4} m³. What is the angular frequency (in rad.s⁻¹) of the suspended system ? (P₀ = 10^5 N/m², g = 10 m/s²)

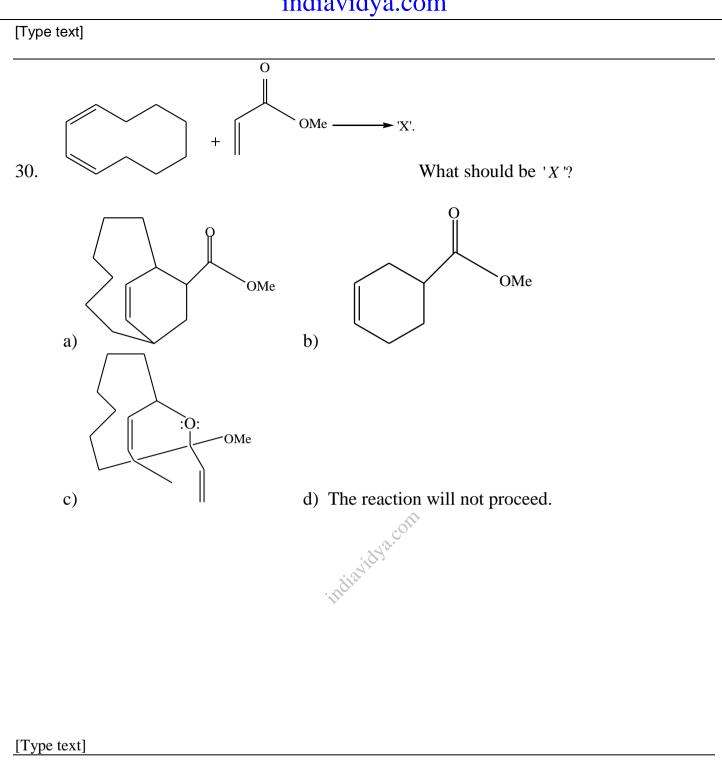
CHEMISTRY

Max Marks: 60

<u>Section-I</u> (Only one option correct Type)

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE IS correct.

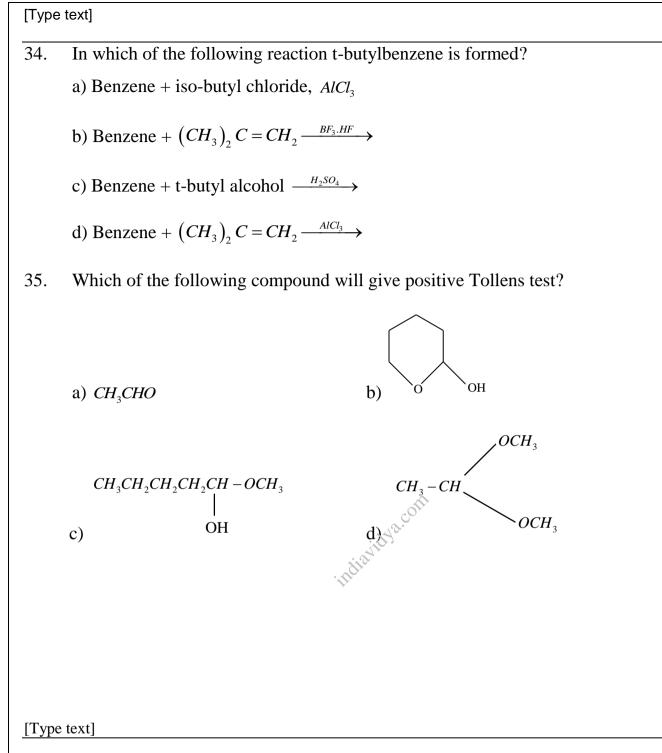

- 21. Standard enthalpy and standard entropy of vaporization of water are + 40 kJ mol⁻¹ and + 120 J mol⁻¹ K⁻¹ respectively. Vapour pressure of water at 27°C expressed as $ln P_{H_2O}$ will be (consider Standard temp. to be 300K)
 - (A) 1.6 (B)1.6 (C) 6.1 (D) 3.2
- 22. Copper I chloride (CuCl) used in fireworks emits blue light of wave length 450 nm when heated to high temperature. What is the increment of energy that is emitted at this wave length?


(A) $44 \times 10^{-23} J$ (B) $44 \times 10^{-23} kJ$ (C) $4.4 \times 10^{-23} J$ (D) $4.4 \times 10^{-23} kJ$

- 23. In an alloy of Mn − Si, atoms of Mn are at 50% of corners and that of Si are at remaining 50% corners of a primitive cubic crystal lattice. If Mn also occupies cubical void, atomic % of Mn in the alloy will be
 - (A) 25% (B) 50% (C) 75% (D) 33.33%

For the cell representation $Ag_{(s)} | AgBr_{(s)} | KBr_{(aq)C_1} | KCl_{(aq)C_2} | AgCl_{(s)} | Ag_{(s)}$; which of the 24. following facts are TRUE? P: It is an example of concentration cell, if the concentration of metal ion used in both the half cells is identical This cell can also be represented as $Ag | Ag^+ \left(\frac{(K_{sp})_{AgBr}}{Br^-}\right) \| Ag^+ \left(\frac{(K_{sp})_{AgCI}}{CI^-}\right) | Ag$ Q: It is an example of electrolytic concentration cell R: The cell reaction would be spontaneous if $(K_{sp})_{A \circ Br} \times [Cl^{-}] < (K_{sp})_{A \circ Cl} \times [Br^{-}]$ **S**: (D) PQRS A) P (B) R (C) QS Aqueous solution of which of the following halide is oxidising 25. a) PCl_3 b) NCl_2 c) PCl₅ d) $AsCl_2$ Which of the following pair of salts forms precipitate with excess of NH_AOH 26. b) $Cu(NO_3)_2$, ZnSO₄ c) FeCl₃, AlCl₃ a) $CuSO_4$, $CdSO_4$ d) all the above I: $\left[Co(H_2O)_6\right]^{+3}$; II: $\left[Cu(H_2O)_6\right]^{+2}$; III: $\left[PtF_6\right]^{-2}$ IV: $\left[Co(H_2O)_3F_3\right]$ The correct 27. statement about the hybridisation of underlined atom of above complexes : a) I, II, III, IV $\rightarrow sp^3d^2$ b) I, II, III, IV $\rightarrow d^2 s p^3$ c) I & III $\rightarrow d^2 s p^3$ d) I & IV $\rightarrow sp^3 d^2$

[Type text]

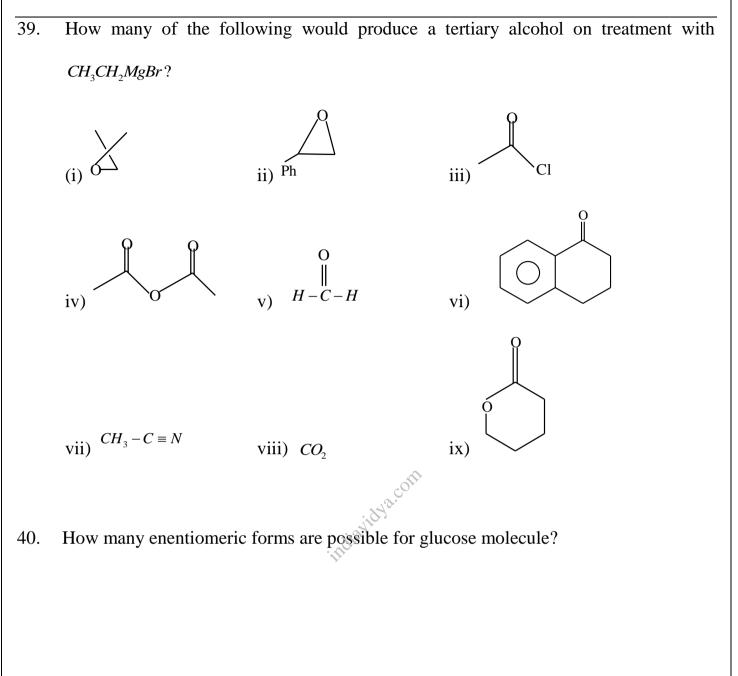


[Type text]

Section-II

	<u>(One or More options correct Type)</u>				
	section contains 5 multiple choice question. Each question has four choices (A), (B), (C) and				
(D) c 31.	but of which ONE or MORE are correct. Which of the following is/are CORRECT?				
51.	-				
	(A) One mole of a liquid mixture containing one mole each of liquid A and liquid B is				
	vaporized. Total vapour pressure is found to be $P_T = \sqrt{P_A^o P_B^o}$				
	(B) A solution of HCl in water forms higher boiling azeotrope which can be distilled				
	with same composition.				
	(C) A 0.1 M solution of H_gCl_2 in water freezes at -0.186° C.It concludes that H_gCl_2				
	does not ionise in water $\left[(K_f)_{H_2O} = 1.86 K k g mol^{-1} \right]$				
	(D) Ideal solutions can be distilled to separate the pure components.				
32.	. Which of the following is/are TRUE?				
	A) In acid medium SnO_2 forms a positively charged colloidal sol containing $[SnO_2]Sn^{4+}$				
	B) In basic medium <i>SnO</i> ₂ forms a negatively charged colloidal sol				
	Which of the following is/are TRUE? A) In acid medium SnO_2 forms a positively charged colloidal sol containing $[SnO_2]Sn^{4+}$ B) In basic medium SnO_2 forms a negatively charged colloidal sol containing $[SnO_2]SnO_3^{2-}$ C) SnO_2 is amphoteric in nature				
	C) SnO_2 is amphoteric in nature $High a V^2$				
	(D) SnO_2 neither reacts with acid nor with base				
33.	. Which of the Hydrohalic acid cannot form acidic salt				
	a) HF b) HCl c) HBr d) HI				
[Type	e text]				

[Type text]


<u>Section-III</u> (Integer value correct Type)

	section contains 5 questions. The answer to each question is a single digit integer, ranging 0 to 9 (both inclusive)
36.	For the reaction $2NO + H_2 \rightarrow N_2O + H_2O$, value of $\left(-\frac{dp}{dt}\right)$ changes from 1.5 torr s ⁻¹ to
	0.25 torr s ⁻¹ when pressure is changed from 360 torr to 150 torr with respect to
	NO keeping pressure of hydrogen to be constant. If pressure of NO is kept constant, it
	is observed that value of $\left(-\frac{dp}{dt}\right)$ changes from 1.6 torr s ⁻¹ to 0.8 torr s ⁻¹ with respect to
	pressure of hydrogen from 300 torr to 150 torr. Order of the reaction will be
	$[\log 2 = 0.301; \log 3 = 0.477; \log 5 = 0.699; \log 7 = 0.845]$
37.	The no. of stereo isomers of $\left[Pt(gly)_3 \right]^+$ is

37. The no. of stereo isomers of $\left[Pt(gly)_3\right]^+$ is _____ 38. Among NF_3 , CCl_4 , SF_6 , PCl_5 , SiF_4 , BCl_3 . The noss of halides which can't under go

hydrolysis at ordinary conditions ______

[Type text]

MATHEMATICS

Max Marks: 60

			<u>Section-l</u>	、	
		Only one o <u>(</u> multiple choice ques NLY ONE IS correct.	-		es (A), (B), (C)
41.		Function $f(x) = \frac{1}{3^{[x]}}$		here {.} represents	fractional part
	function)	C C			
	a) [1,2]	b) [1,2)	c) (1,2]	d) none	e of these
42.	A circle touches	two of the smaller	sides of $\triangle ABC$	and has its centre	on the greatest
	side where a > b	> c. If r is the radi	us of the incircl	le and r_1 is the radi	ius of the given
	circle, then				
	a) $0 < \frac{r_1}{r} < 1$	b) $1 < \frac{r_1}{r} < 2$	c) $2 < \frac{r_1}{r} < 3$	d) $3 < \frac{r_1}{r} < 4$	
43.	If $f:[0,1] \to (0,\infty)$) then the number	of mappings f	such that $\int_{0}^{1} f(x) dx =$	$=1, \int_{0}^{1} xf(x) dx = \alpha$
	and $\int_{0}^{1} x^2 f(x) dx = \alpha$	² is	idiaidya.com		
	a) 2	b) 1	$\mathbf{\dot{b}}^{\mathbf{i}\mathbf{k}\mathbf{c}}$ 0 $\mathbf{\dot{c}}$	l) Infinite	
44.	Five numbers out	t of 1, 2, 3,,9 are	e written randor	mly at four vertices	and centroid of
	a regular tetrahed	lron. The probability	that 6 is writte	n at centroid of tetr	ahedron is
	a) 5/9	b) 4/9	c) 8/9	d) 1/9	
[Туре	e text]				

[Туре	e text]				
45.	Let A, B, C, D be distinct points on a circle with centre at O. If there exists non zero				
	real numbers x an	nd y such that $ x\overrightarrow{OA} $	$+ y \overrightarrow{OB} = x \overrightarrow{OB} + y \overrightarrow{OC} $	$\vec{C} = \left x \overrightarrow{OC} + y \overrightarrow{OD} \right = \left x \overrightarrow{OD} + y \overrightarrow{OA} \right $ then	
	a) ABCD is a rec	tangle	b) ABCD is a s	square	
	c) ABCD is a rho	ombus	d) nothing can	be said	
46.	The number of	values of k for w	which $(x^2 - (k-2))$	$(x^2+kx+2k-4)$ is a perfect	
	square is				
	a) 1	b) 2	c) 0	d) none of these	
47.	The values of a a	and b which satisfy	$\int \frac{2\sin 2x - \cos x}{4 - \cos^2 x - 4\sin x}$	$dx = a \log \sin x - 1 + b \log \sin x - 3 + c$,	
	are respectively				
	a) $-\frac{3}{2}, \frac{11}{2}$	b) $\frac{3}{2}, \frac{11}{2}$	c) $\frac{3}{2}, -\frac{11}{2}$	d) $-\frac{3}{2}, -\frac{11}{2}$	
48.	The number of n	atural numbers less	than or equal to	2012, which are relatively prime	
	to 2012 is				
	a) 1004	b) 1006	c) 1005	d) 4	
49.	Let O be an inter	tior point of $\triangle ABC$	such that $\overrightarrow{OA} + 2\overrightarrow{OA}$	$\vec{B} + 3\vec{OC} = \vec{0}$. Then the ratio of area	
	of $\triangle ABC$ to area	of $\triangle AOC$ is	diavi		
	a) 2	b) 3/2	c) 3	d) 5/3	
50.	Let $p(x) = x^5 + x^2$	$x^2 + 1$ has zeroes x_1	$x_{2}, x_{3}, x_{4}, x_{5}$ and	$g(x) = x^2 - 2$. Then the product	
	$g(x_1)g(x_2)g(x_3)g(x_$	$(x_4)g(x_5)$ is equal to			
	a) 1/23	b) 23	c) -23	d) none of these	
[Type	e text]				

[Type text]

	<u>Section-II</u>					
	(One or More options correct Type) This section contains 5 multiple choice question. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.					
51.	Let $f(x) = x+1 (x + x-1)$. Then which of the following is/are true?					
	a) $f \not (-1) = 3$ b) f is continuous at $x = -1$					
	c) f is not differentiable at $x = 0$ d) Rf $\phi(1) = 5$					
52.	Let $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$					
	$p = a_1 + a_2 + a_3 + \dots + a_6$					
	$q = a_1 a_3 + a_3 a_5 + a_5 a_1 + a_2 a_4 + a_4 a_6 + a_6 a_2$					
	$r = a_1 a_3 a_5 + a_2 a_4 a_6$. Then the equation $2x^3 - px^2 + qx - r = 0$ has					
	a) one root between (a_1, a_2) b) two roots between (a_1, a_3)					
	c) two roots between (a_1, a_4) d) two roots between (a_3, a_5)					
53.	If $f: N \to \left[-\sqrt{2}, \sqrt{2}\right]$ such that $f(x) = \sin x + \cos x$, then $f(x)$ is					
	a) one-one b) onto c) many-one d) into					
54.	. A hyperbola has center C and one focus at $P(6,8)$. If it's two directrices are					
	3x+4y+10 = 0 and $3x+4y-10 = 0$, then					
	a) CP = 10 b) eccentricity = $\sqrt{5}$					
	c) CP = 8 d) eccentricity = $\sqrt{5}/2$					

55. If n different objects are distributed at random among n +2 persons so that each person can get any number of things (i.e., 0, 1, 2,, n things) then the probability that a) exactly 2 persons will get none of the objects is $\frac{(n+1)!}{2.(n+2)^{n-1}}$ b) exactly 3 persons will get none of the objects is $\frac{n+2}{2(n+2)^{n-1}}$ c) exactly 3 persons will get none of the objects is $\frac{n.(n-1)({}^{n}C_{2})(n-2)!}{(n+2)^{n}}$ d) exactly 2 persons will get none of the objects is $\frac{n.(n-1)^{2}.(n+1)}{12(n+2)^{n-1}}$

<u>Section-III</u> (Integer value correct Type)

This section contains 5 questions. The answer to each question is a single digit integer, ranging from 0 to 9 (both inclusive)

56. The least positive integral value of real λ so that the equation $(x-a)(x-c)(x-e) + \lambda(x-b)(x-d) = 0, (a > b > c > d > e)$ has distinct real roots is_____

57. Let z_1, z_2, \dots, z_n be equi-modular non-zero complex numbers such that

 $z_1 + z_2 + \dots + z_n = 0$. Then $\operatorname{Re}\left(\sum_{j=1}^n \sum_{k=1}^n \frac{z_j}{z_k}\right)$ is equal to_____

[Type text]

58. The number of distinct terms in the expansion of $\left(x+y+z+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)^2$ is m and that

in the expansion of $\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2$ is n, then |m-n| =______

59. Let A be a 3×3 matrix with real entries. If $AA^{T} = I$, then the value of det $(A^{2} - I_{3}) =$ _____

60. Number of divisors of a natural number n is 105 and n is divisible by exactly 3 distinct prime numbers and is having the least value. The number of divisors of 4k + 1 form (where $k \in N$) of the number n is _____

[Type	text]
-------	-------

[Туре	text]																					
		JEE-2	Advance	ed_GTA	4																	
Paper-1_Key & Solutions KEY SHEET <u>PHYSICS</u>																						
											1)	А	2)	С	3)	А	4)	D	5)	С	6)	А
											7)	В	8)	D	9)	С	10)	D	11)	ABCD	12)	BC
13)	BD	14)	AB	15)	BC	16)	4	17)	5	18)	4											
19)	1	20)	6																			
CHEMISTRY																						
21)	А	22)	В	23)	С	24)	С	25)	В	26)	С											
27)	С	28)	D	29)	С	30)	А	31)	ABCD	32)	ABC											
33)	BCD	34)	ABC	35)	ABC	36), off	3	37)	4	38)	3											
39)	5	40)	2		Ś	avidyu																
MATHEMATICS																						
41)	D	42)	В	43)	С	44)	D	45)	В	46)	А											
47)	А	48)	А	49)	С	50)	С	51)	BC or BCD	52)	A,C											
53)	A,D	54)	A,B	55)	AB	56)	1	57)	0	58)	1											
59)	0	60)	8																			

[Type text]

SOLUTIONS <u>PHYSICS</u>

Α 1. Due to time varying magnetic field, emf will induce only in segment A_1A_2 and A_3A_4 only. But Net emf in the loop will be zero. Hence current zero. 2. С 3. А Using snell's law between origin (y = 0) y = H, we get, $2 \times \sin 60^{\circ} = \frac{2}{1 + H^2} \cdot \sin 90^{\circ}$ $\frac{\sqrt{3}}{2} = \frac{1}{1+H^2} \Longrightarrow 1 + H^2 = \frac{2}{\sqrt{3}}; H = \sqrt{\frac{2}{\sqrt{3}}} - 1$ 4. D The dimension of $\frac{B}{E\sqrt{LC}}$ is $\frac{1}{meter}$ $\left(\frac{B}{E} = \frac{1}{V} \& \frac{1}{\sqrt{LC}} = \omega = \frac{1}{T}\right)$ 5. $E = -\frac{dV}{dx} = -4x$ $\frac{dE}{dx} = \frac{\rho}{\varepsilon_0} = -4$ indiavidya.com $\Rightarrow \rho = -4\varepsilon_0$ 6. $m_1g - T = m_1a$ $T_r = m_1 \frac{r^2}{2} \frac{a}{r}$ $\Rightarrow a = \frac{2g}{3}; T = \frac{m_1g}{3}$ Also, $T = \mu m_2 g$, $\Rightarrow \mu = \frac{m_1}{3m_2}$ Balancing torque about A, we get $TR = m_2 g R$ $\frac{m_1g}{2}, R = m_2gR$ $\Rightarrow m_1 = 3m_2 \Rightarrow \mu = \frac{m_1}{3m_2} = 1$ 7. R $A = \lambda N = \lambda N_0 e^{-\lambda t}$ $\ln A = \ln \lambda N_0 - \lambda t$ 8. D Applying KVL in the outer loop $V_0 \cos \omega t + IR - 2V_0 \cos \left(\omega t + \pi \right) = 0$ $\Rightarrow IR = 2V_0 \cos(\omega t + \pi) - V_0 \cos \omega t$

[Type text]

9.

$$\Rightarrow I = \frac{-2V_0 \cos \omega t - V_0 \cos \omega t}{R} = \frac{-3V_0 \cos \omega t}{R}$$
A
$$(B_1)_x = 0, (B_1)_y = \frac{\mu_0 I}{4\pi d} (-\hat{j})$$

$$(B_2)_x = \frac{\mu_0 I}{8\pi d} \sin \theta \hat{i}, (B_2)_y = \frac{\mu_0 I}{8\pi d} \cos \theta (-\hat{j})$$

$$(B_3)_x = \frac{\mu_0 I}{8\pi d} \cos \theta (-\hat{i}), (B_3)_y = \frac{\mu_0 I}{8\pi d} \sin \theta (-\hat{j})$$

$$B_{net} = \frac{\mu_0 I}{8\pi d} [\sin \theta - \cos \theta] \hat{i} - \frac{\mu_0 I}{8\pi d} (2 + \cos \theta + \sin \theta) \hat{j} \setminus$$

$$B_{net} = \frac{\mu_0 I}{8\pi d} \sqrt{6 + 4 \sin \theta + 4 \cos \theta}$$

$$f(\theta) = 6 + 4 \sin \theta + 4 \cos \theta$$

$$f'(\theta) = 4(\cos \theta - \sin \theta) = 0$$

$$\tan \theta = 1 \text{ for } 0^0 < \theta < \frac{\pi}{2}$$

$$\theta = \frac{\pi}{4}$$

А

Given that $P = 2e^{2V}$ $\frac{nRT}{V} = 2e^{2v}$

$$T = \frac{2V}{nR}e^{2V}$$

 nR^{-} By differentiating $\frac{dT}{dV} = \frac{2}{nR} \Big[2Ve^{2v} + e^{2V} \Big]^{\frac{1}{4}} \Big[2Ve^{2v} + e^{2V} \Big]^{\frac{1}{4}}$ $\frac{dT}{dV} = \frac{2}{nR} \Big[2Ve^{2v} + e^{2V} \Big]$ ABCD

$$\frac{dT}{dV} = \frac{2}{nR} \Big[2Ve^{2v} + e^{2v} \Big]$$

.

11. ABCD

12. BC

First find centre of circular path and than use

Solutions

13.

$$V_{c}$$

$$V_{c} = \sqrt{V_{c}^{2} + V_{x}^{2}} = 300$$

$$V_{L} = V_{c}$$

$$2V_{R} = 400$$

$$IR = 200$$

$$\therefore R = 20\Omega$$
14. AB
A = deformation in equilibrium state

$$2kA = \frac{\sigma}{\epsilon_{0}}q,$$

$$\therefore A = \frac{\sigma q}{2k \epsilon_{0}}$$
Springs are connected in parallel $k_{eq} = 2k$
Angular frequency $= \sqrt{\frac{2k}{m}}$
15. BC
When rotating west to east
 $\omega_{rel} = \frac{2\pi}{1.5} - \frac{2\pi}{24} = 2\pi \left(\frac{15}{24}\right)$
 $T' = \frac{2\pi}{1.5} + \frac{24}{15} = 1.6hrs$
When rotating east to west
 $\omega_{rel} = \frac{2\pi}{1.5} + \frac{24}{24} = 2\pi \left(\frac{17}{24}\right)$
 $\Rightarrow T' = \frac{2\pi}{0} = \frac{24}{17}hrs$
16. 4
17. 5
velocity of Point 'P $\sqrt{V_{0}^{2} + (R\omega_{0})^{2}}$
 $k_{pr} = 4\sqrt{5}m/s$
 $a_{consigned} = \frac{(8)^{2}}{8} = 8\sqrt{5}m/s^{2}$
and $a_{1} = a_{cp}\sin \theta = 16m/s^{2}$
 $R = \frac{(V_{c})^{2}}{a_{1}} = 5m$

Solutions

[Type text] 18. 4 $Al \sigma g - Ax \rho g = Al \sigma a$ $a=b-\frac{\rho g x}{\sigma \ell}$ $\int_{0}^{v} v dv = \int_{0}^{x} g - \frac{\rho g x}{\sigma \ell} dx \qquad \qquad \Rightarrow \frac{v^{2}}{2} = g x - \frac{\rho g}{\sigma \ell} \frac{x^{2}}{2}$ At maximum displacement, $\Rightarrow x = \frac{2\sigma\ell}{\rho} = 2 \times \frac{1}{2} \times 4 = 4m$ 19. $A^{150} \rightarrow B^{146} + \alpha \text{ particle}$ at t = 4 hour $= 2t_{1/2}$ $m_A = \frac{50}{4} gm$ and $m_B = \frac{146}{4} gm$ Now difference of mass $(A+B) = 50 - \left(\frac{50}{4} + \frac{146}{4}\right) = 1 gm$ 6 20. $P = P_0 + \frac{mg}{A} = 2 \times 10^5 N / m^2$ $P'V'^{\gamma} = PV^{\gamma}$ $P' = P\left(\frac{V}{V'}\right)^{\gamma}$ $P' = P\left(1 + \frac{\gamma A x}{V}\right)$ Also, $P'A + kx - mg - P_0A = ma$ $\Rightarrow \left(\frac{P\gamma A}{V} + k\right)x = ma$

$$\Rightarrow \omega = \sqrt{\frac{\left(\frac{P\gamma A^2}{V} + k\right)}{m}} = 6 \, rad \, / \, s$$

CHEMISTRY:

21.

$$DG^{\circ} = DH^{\circ} - TDS^{\circ} = -RT \ln K; \ H_2 O_{(l)} f \quad H_2 O_{(v)}$$
$$\ln K = \ln P_{H_2 O} = -\frac{DH^{\circ} - TDS^{\circ}}{RT} = -\frac{40' \ 1000 - \ 300' \ 120}{8.314' \ 300} = -1.6$$

22.

$$\Delta E = \frac{hC}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{450 \times 10^{-9}} = 44 \times 10^{-20} J$$

23.

$$Mn = (\frac{1}{8} \times 4) + 1 = 1.5; Si = (\frac{1}{8} \times 4) = 0.5; Mn_{1.5}Si_{0.5}$$

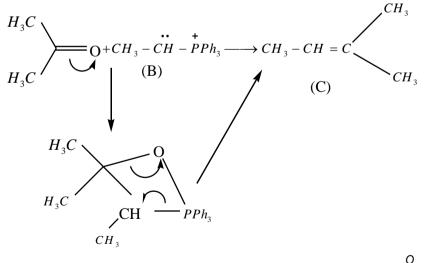
24. Given cell consists of half cells of metal – metal insoluble salt. Each can be reduced to metal – metal ion half cell

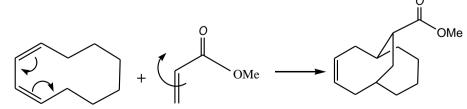
:03'

25. $NCl_3 + 3H_2O \rightarrow NH_3 + 3HOCl$

.: Oxidising

26. Conceptual


27. $I: Co^{+3}$ With H_2O from low spin.


 $III: Pt^{+4}: '5d'$ element with all ligands from low spin.

28.

$$C_{2}H_{5}Cl \xrightarrow{KCN} C_{2}H_{5}CN \xrightarrow{H_{3}O^{+}} C_{2}H_{5} - COOH$$
(X)
(Y)

$$CH_{3}CH_{2} - \overset{+}{PPh_{3}Br^{-}} + C_{2}H_{5}ONa \longrightarrow CH_{3} - \overset{+}{CH} - \overset{+}{PPh_{3}}$$
(A)
(B)

30.

Solutions

[Туре	e text]								
31.	(A) Let number of of moles of B vaporized be a. Number of moles of B in vapour and liquid phase will be a and $(1 - a)$ Number of moles of A in vapour and liquid phase will be $(1 - a)$ and a								
	In liquid phase: $P_T = P_A^o X_A + P_B^o X_B; P_A^o a + P_B^o (1-a)$								
	In Vapour phase: $\frac{1}{P_T} = \frac{Y_A}{P_A^o} + \frac{Y_B}{P_B^o}; \frac{1}{P_T} = \frac{(1-a)}{P_A^o} + \frac{a}{P_B^o}$ (B) A solution of HCl in water forms non-ideal solution with negative deviation. Hence it forms higher boiling azeotrope. Azeotropic mixtures are constant boiling mixtures. (C) $\Delta T_f = K_f \times molaltiy \times i; 0.186 = 1.86 \times 0.1 \times i; i = 1 \Rightarrow$ It retains its molecular identity.								
(D) Components of ideal solutions can be separated by distillation method since they mixtures									
32.	Being amphoteric SnO_2 reacts both with HCl and NaOH.								
	SnO_2 reacts with HCl to form $SnCl_4$. Adsorption of Sn^{4+} results formation of a positively charged colloidal sol.								
33.	SnO_2 reacts with NaOH to form Na_2SnO_3 . Adsorption of SnO_3^{2-} results formation of a negatively charged colloidal sol. HCl, HBr, HI are mono basic								
34.									
36. Let order with respect to <i>NO</i> be "x" and that of H_2 be "y"									
	$r = \left(-\frac{dp}{dt}\right); \frac{1.5}{0.25} = \left(\frac{360}{150}\right)^x \Rightarrow x = 2; \frac{1.6}{0.8} = \left(\frac{300}{150}\right)^y \Rightarrow y = 1. \text{ Over all order of reaction} = 3$								
37.	$\left[Pt(gly)_3\right]^+$ exhibit two geometrical isomers, cis and trans both are optically active.								
38.	$NF_3 SF_6 CCl_4$ Q Q Q Q Q Q Q Q Q Q								
20									
39. 40.	2								

MATHEMATICS:

41.
$$f(x) = \frac{1}{3^{|x|} - 9^{|x|} + 1}$$

$$= \frac{1}{t - t^{2} + 1} = \frac{1}{f(t)} \text{ where } 3^{|x|} = t$$

$$Of \{x\} < 1 \qquad P \quad 1f \quad 3^{|x|} < 3P \quad 1f \quad t < 3$$

$$f(t) = t - t^{2} + 1P \quad f(t) = 1 - 2t$$

$$f(t) < 0 \quad \text{ for } t \quad [1, 3] \text{ and } f(t) \text{ is decreasing}$$

$$\setminus \max = f(1) = 1$$

$$f(t) > f(3) = 3 - 9 + 1 = -5$$

$$- 5 < f(t) f \quad 1 \qquad P \quad \text{Range of } \frac{1}{f(t)} = \left(-\frac{1}{4}, -\frac{1}{5}\right) f \quad [1, \frac{1}{5}]$$

$$42. \qquad \frac{a_{1} + b_{1}}{2} = \Delta = rs$$

$$\Rightarrow (a + b)r_{1} = (a + b + c)r$$

$$\Rightarrow \frac{r}{r} = 1 + \frac{c}{a + b}$$

$$\Rightarrow 1 < \frac{r}{r} < 2.$$

$$43. \quad \text{Consider } \int_{0}^{1} (\alpha - x)^{2} f(x) dx = \int_{0}^{1} (\alpha^{2} f(x) - 2\alpha x f(x) + x^{2} f(x)) dx$$

$$= \alpha^{2} - 2\alpha^{2} + \alpha^{2} = 0$$
However f(x) assumes only positive values i.e. in (0,1)

$$\Rightarrow (\alpha - x)^{2} (f(x)) > 0 \Rightarrow \text{Integral can't be zero.}$$

$$44. \quad \text{Required probability} = \frac{\text{Number of favourable cases}}{\text{Total cases}} = \frac{1}{9}$$

$$45. \quad \text{Given } \overline{|\Delta A|} = |\overline{\partial B|} = |\overline{\partial C}| = |\overline{\partial D|} = r(say)$$

$$\text{Squaring the given equations, we get}$$

$$(x^{2} + y^{2})r^{2} + 2xy\overline{\partial A \partial B} = (x^{2} + y^{2})r^{2} + 2xy\overline{\partial D \partial A}$$

$$\Rightarrow \overline{\partial A \partial B} = \overline{\partial B \partial C} \subset \overline{OC \partial A} = \overline{\partial D \partial A}$$

$$\Rightarrow \cos(\angle A \partial B) = \cos(\angle B O C)$$

$$= \cos(\angle C O D) = \cos(\angle B O C)$$

$$= \cos(\angle C O D) = \cos(\angle B O C)$$
Since sum of these four angles is 2π and all angles are equal, ABCD is a square.
$$46. \quad \text{Let the expression is of the form $(x - \alpha)(x - \beta)(x - \gamma)(x - \delta)$.$$

common. i.e., $(k-2)^2 + 8k = 0$ and $k^2 - 4(2k-4) = 0$ or $\frac{2-k}{k} = \frac{-2k}{2k-4}$ Solving we get k can take only one value

[Type text]

 $\dot{O} \frac{(4\sin x - 1)\cos x}{3 + \sin^2 x - 4\sin x} dx$ 47. Put sinx = t $= \dot{0} \frac{(4t-1)}{t^2 - 4t + 3} dt$ $= \dot{0} \frac{(4t-1)}{(t-1)(t-3)} dt$ $= \dot{\mathbf{O}} \hat{\mathbf{g}}_{\mathbf{t}_{-1}}^{\underline{a}} + \frac{\mathbf{b}}{\mathbf{t}_{-2}} \hat{\mathbf{c}}_{\mathbf{t}_{-1}}^{\underline{a}} dt$ Then $a = \hat{e}_{\hat{e}_{t-3}\hat{u}_{t-3}}^{\hat{e}_{t-1}\hat{u}_{t-3}\hat{u}_{t-3}} = -\frac{3}{2} \text{ and } b \hat{e}_{\hat{e}_{t-1}\hat{u}_{t-3}\hat{u}_{t-3}}^{\hat{e}_{t-1}\hat{u}_{t-3}\hat{u$ 48. $2012 = 2^2$ 503 where 503 is prime Þ {503,1006, 2, 4, 6....., 2012} are not relatively to 2012 Required answer = 2012 - 1008 = 1004The required ratio is $\frac{\left|\overrightarrow{OA} \times \overrightarrow{OB}\right| + \left|\overrightarrow{OB} \times \overrightarrow{OC}\right| + \left|\overrightarrow{OC} \times \overrightarrow{OA}\right|}{\left|\overrightarrow{OC} \times \overrightarrow{OA}\right|}$ 49. Also, $\left(\overrightarrow{OA} \times \overrightarrow{OB}\right) + 3\overrightarrow{OC} \times \overrightarrow{OB} = \overline{0}$ $\left|\overrightarrow{OA} \times \overrightarrow{OB}\right| = 3\left|\overrightarrow{OC} \times \overrightarrow{OB}\right|$ Similarly $\left| \overrightarrow{OA} \times \overrightarrow{OC} \right| = 2 \left| \overrightarrow{OB} \times \overrightarrow{OC} \right|$ $\Rightarrow \frac{\left|\overline{OA} \times \overline{OB}\right|}{3} = \left|\overline{OB} \times \overline{OC}\right| = \frac{\left|\overline{OC} \times \overline{OA}\right|}{2} = \lambda$ Therefore required ratio $\frac{6\lambda}{2\lambda} = 3$. Let us form that equation having roots $y = g(x_i)$ i.e., $y = x^2 - 2$ 50. $x = \sqrt{y+2}$ $\Rightarrow \left(\sqrt{y+2}\right)^5 + \left(\sqrt{y+2}\right)^2 + 1 = 0$ $\Rightarrow y^5 + 10y^4 + 40y^3 + 79y^2 + 74y + 23 = 0$ $\therefore g(x_1)$g(x_5) = Product of roots = -23. We have $f(x) = \begin{cases} (x+1)(2x-1) \text{ for } x < -1 \\ -(x+1)(2x-1) \text{ for } -1 \text{ for } x < 0 \\ (x+1) \text{ for } 0 \text{ for } x < 1 \\ (x+1)(2x-1) \text{ for } x^{3-1} \end{cases}$ 51. $Lf \not(-1) = -3$ and $Rf \not(-1) = 3 \not P f \not(-1)$ does not exist At x = -1, LHL = RHL = 0 and f(-1) = 0

 \setminus f is contiuous at x = - 1

Solutions

[Type text]

Lf
$$\mathfrak{A}(0) = -1$$
 and Rf $\mathfrak{A}(0) = 15$ f $\mathfrak{A}(0)$ does not exist
Rf $\mathfrak{A}(1) = \mathfrak{A}(x+1)2 + (2x-1)(1)$ at $x = 1\mathfrak{A} = 5$
52. $= (x-a_1)(x-a_2)(x-a_3) + (x-a_2)(x-a_4)(x-a_6)$
 $4a_1$ a_2 a_3 a_4 a_6 a_6
53. $f(x) = \sqrt{2} \sin\left(\frac{\pi}{4} + x\right)$
Suppose for a natural number k, $\mathfrak{f}(x)$ assumes values $\sqrt{2} \sin\left(\frac{\pi}{4} + x\right)$,then the same value is assumed
again by the function at $P = n\pi + (-1)^* \left(\frac{\pi}{4} + k\right)$
Irrespective of 'n' P can never be a natural number.
Hence $\mathfrak{f}(x)$ is one-one.
Further $\mathfrak{f}(x)$ cannot attain all values in $\left[-\sqrt{2},\sqrt{2}\right]$ which $\sqrt{2} \sin\left(\frac{\pi}{4} + x\right)$ attains irrational values.
e.g. $\mathfrak{f}(x) = 0$ when $\frac{\pi}{4} + x = n\pi$ which is not true for $x \in N$. Hence into.
54. A.M. of distances of focus from two directrices is CP i.e. 10
CP/distance between two directrices = $\frac{(eccentricity)^2}{2}$
 $= \frac{10}{4} = \frac{e^2}{2} \Rightarrow e = \sqrt{5}$
55. Probability that exactly 2 persons will get nothing
 $= {}^{m^2}C_2 \frac{n!}{(n+2)^n} = \frac{(n+2)(n+1)n!}{2(n+2)^{n-1}}$
Probability that exactly 3 persons will get nothing $= {}^{n-2}C_3 \cdot \frac{{}^{n-1}C_1{}^nC_2{(n-2)!}}{(n+2)^n}$
56. $f(x) = (x-a)(x-c)(x-e) + \lambda(x-b)(x-d)$
 $\Rightarrow f(a) = \lambda(a-b)(a-d)$
 $\Rightarrow f(a) = \lambda(a-b)(a-d)$
 $\Rightarrow f(b) = (b-a)(b-c)(b-c) < 0$
 $f(c) = \lambda(c-b)(c-d)$
 $f(d) = (d-a)(d-c)(d-e) > 0$

Solutions

[Type text]

 $f(e) = \lambda (e-b)(e-d)$ If $\lambda > 0 f(a) > 0$, a root lies between b and a. If $\lambda < 0 f(e) < 0$, a root lies between e and d. Always a root lies between d and $b \Rightarrow$ all roots are real and distinct as exactly two can't be real. If $\lambda = 0$ roots are a,c and e. $|z_1 + z_2 + \dots + z_n|^2 = 0$ 57. $\Rightarrow |z_1|^2 + |z_2|^2 + \dots + |z_n|^2 + z_1\overline{z_2} + z_2\overline{z_1} + \dots = 0$ \rightarrow (1) Also $P = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{z_i}{z_j} \right)$ $=n+\frac{z_1\overline{z_2}}{|z_1|^2}+\frac{z_2\overline{z_1}}{|z_1|^2}+....$ $P = n + \frac{(z_1 \overline{z_2} + z_2 \overline{z_1} + \dots)}{z_1^2}$, where $|z_1| = |z_2| = \dots = |z_n|$ $\Rightarrow \operatorname{Re}(P) = n + \frac{\operatorname{Re}(z_1\overline{z}_2 + z_2\overline{z}_1 + \dots)}{r^2}$ $=n+\frac{(-nr^2)}{r^2}=0.$ (Using (1)) Or $z_1, z_2, z_3, \dots, z_n$ can be taken as nth roots of unity m = number of distinct terms in $\hat{\mathbf{x}}_{\mathbf{x}}^{\mathbf{k}} = \mathbf{x}^2 + \mathbf{a} + \mathbf{a} + 2\mathbf{a} + 2\mathbf{a}$ 58. n = number of distinct terms in $\overset{\circ}{a}_{x}^{2}$ x² + $\overset{\circ}{a}_{x}^{2}$ + 2 $\overset{\circ}{a}_{x}^{2}$ xy + 2 $\overset{\circ}{a}_{x}^{2}$ (1) + 2 $\overset{\circ}{a}_{x}^{2}$ x $\overset{\circ}{b}_{y}^{2}$ + $\frac{1}{2}\overset{\circ}{b}_{y}^{1}$ 19 $|\mathbf{m} - \mathbf{n}| = 1$ $\det\left(A^{2}-I_{3}\right)=\det\left(A^{2}-AA^{T}\right)=\det\left(A\left(A-A^{T}\right)\right)$ 59. $= \det(A - A^T)\det(A)$ Further det (A) = ± 1 , and matrix $A - A^T$ is a skew symmetric matrix with odd order hence its determinant is 0. 60. Number $= 2^6 3^4 5^2$ α = divisors of (4k + 1) form ($k \ge 1$) = number of combinations of any number of elements from each of $\{9, 81\}$ and $\{5, 25\}$ = (2 + 1) (2 + 1) - 1 = 8