indiavidya.com

Summative Assessment - Model Paper Mathematics

(English Version)

Tim	e : 15	Min + 2 hr. 30 min. Paper-I Max. Marks : 40				
Inst	ructio	 Answer all the questions. Write answers to the objective type questions on answer sheet, but at same place. 				
I.	Answer every question. Each question carries one mark.					
	1.	Find centroid of the triangle formed by A(-1, 2), B(0, 3), C(-2, 4) (P.S.)				
	2.	How do you find the distance between two points on the line parallel to x-axis. Explain. (R & P)				
	3.	If the slope of linesegment joining P(-2, 3), $Q(x, 6)$ is -1, then find x. (P.S.)				
	4.	Simplify log ₉ ²⁴³ . (Com)				
	5.	Explain the nature of roots of $3x^2 - 2x + 16 = 0$ with reasons. (Com)				
	6.	Find cubic polynomial with the zero values -7, 1, 2. (P.S.)				
	7.	Can $x+2$, $x+4$ and $x+9$ be in A.P. Justify your answer. (R & P)				
II.	Ans	wer every question. Each question carries 2 marks.				
	8.	How many two digit numbers are divisible by 7 ? (Com)				
	9.	Show that $2\sqrt{3}$ is irrational number. (R & P)				
	10.	If A = {1, 3, 6, 9}, B = {1, 2, 3, 4, 5, 6} then show $A^{\cup}B$ and A-B as Venn diagrams. (Rep & V)				
	11.	Are sets of multiples of 3 and muliples of 2 disjoint sets. Justify your answer $? (R \& P)$				
	12.	Find the ratio in which y-axis devides the line segments joining the points A(3, 2), B(-1, 2). (P.S.)				
	13.	Find the area of quadrillateral formed by the points A(2, 1), B(4, 3), C(-1, 3), D(-3, 1) (P.S.)				

indiavidya.com

III. Answer every question. Each question carries 4 mark.

14(a) The length and breadth of a rectangular metal sheet are in the ratio 7 : 5. Four $3 \text{cm} \times 3 \text{cm}$ squares have been separated from the cornersof that rectangle and it has been moulded into a cuboid of 96 cm³ of valume. Find the area of the rectangular metal sheet take in the begining. (Connection)

(OR)

- (b) A stone is thrown vertically upwards from a building of 96 ft hight with a initial velocity of 116 ft/sec. If the accellaration due to gravity is 32 ft/sec², then after how many seconds the stone will reach the ground. (Connection)
- 15(a) Rama has arranged 256 dots to draw a rangoli in the following ways. In how many rows has she arrange the dots. (P.S.)

- (b) In a nuclear fusion reaction a U²³⁵ Nuclous will split two lighter nuclear creates 3 Nutrons and 200 MeV of energy These three Nutrons will again split three U²³⁵ Nucleas. Find the energy released if this process continuous for 10 stages. (P.S.)
- 16(a) Draw the graph of $p(x) = x^2 12x + 35$ and fidn the zeroes of the polynomial of it.

(OR)

(b) The product of two consequetive multiples of 3 is 81. Form a quadratic equation and by using this information draw its graph. (Rep & V)

$$\frac{1}{17(a) \text{ Solve } \frac{1}{x+y} + \frac{2}{x-y} = \frac{1}{15}$$
$$\frac{1}{3(x+2y)} - \frac{1}{3(x-2y)} = \frac{-8}{45} \quad (P.S.)$$
(OR)

(b) 5 women and 3 men having same capacity can complete a work in 6 days. And 3 men, 3 women of same capacity together complete the same work in 9 days, then in how many days a women or a man can complete the work. (P.S.)

indiavidya.com

IV. Choose the wright answer, and write the correct answer in the brackets.

18.	The decimal form	of $\frac{1}{400}$ is (Comm)			()		
	A) 0.25	B) 0.025	C) 0.0025	D) 0.00025				
19.	$A = \{1, 2, 3, 4, 5\}$	$(5, 6), B = \{2, 4, 6\}$	then (Comm)		()		
	A) $B \in A$	B) $A \in B$	C) B ⊂ A	D) $A \subset B$				
20.	If there is no x ter	m in a cubic polynom	nial then (R & P)		()		
	A) $\alpha + \beta + \gamma = 0$	B) $\alpha\beta+\beta\gamma+\alpha\gamma =$	0 C) α + β + γ = 0	D) Not poss	sible			
21.	If $2x - 5y = 17$ and	nd $4x - 10y = 8$ then	these equation are	(R & P)	()		
	A) Consistant	B) Inconsistant	C) Equal	D) none of t	the ab	ove		
22.	The product of two consequitive numbers is 56. Then quadatic equation formed by							
	this is (Comm)				()		
	A) $x^2 + x - 56 =$		B) $x^2 - x + 56 =$					
	C) $x^2 + x + 56 =$	0	D) $x^2 - x - 56 =$	0				
23.	If x-coordinates of two points are zero. Then slope of the line segment joined by these							
			Gen slope of the line	segment joined	i Uy u	iese		
	two points is (R &	2 P)			()		
			C) -1	D) not defin	(``		
24.	two points is (R &	B) 1 that			(``		
	two points is (R & A) 0	B) 1 that			(ned ())		
	two points is (R & A) 0 1, -2, 4, -8, A) AP	B) 1 is (P.S.)	C) -1 C) Both	D) not defin	(ned ())		
24.	two points is (R & A) 0 1, -2, 4, -8, A) AP	(Commerced by the second seco	C) -1 C) Both	D) not defin	(ned ())		
24.	two points is (R & A) 0 1, -2, 4, -8, A) AP $A = \{x : x \in N; A\}$ A) A = $\{0\}$	(Commerced by the second seco	 C) -1 C) Both C) A = {\$\$\$\$}\$ 	D) not defin D) None of	(ned ())		
24. 25.	two points is (R & A) 0 1, -2, 4, -8, A) AP $A = \{x : x \in N; A\}$ A) A = {0} Discriminant of a	(Comm B) 1 B) 1 B) GP $x \le 0$ then (Comm B) A = 0	 C) -1 C) Both C) A = {\$\$\$} S.) 	D) not defin D) None of D) A = \$	(ned (these ())		
24. 25.	two points is (R & A) 0 1, -2, 4, -8, A) AP $A = \{x : x \in N; A\}$ A) $A = \{0\}$ Discriminant of (A) $b^2 - 4ac$	B) 1 B) 1 B) GP $x \le 0$ then (Comm B) $A = 0$ $\alpha x^2 + \beta x + \gamma = 0$ (P.1)	C) -1 C) Both C) A = $\{\phi\}$ S.) C) $\beta^2 - 4\alpha\gamma$	D) not define D) None of D) $A = \phi$ D) $\beta^2 + 40$	(ned (these (ζ)		
24. 25. 26.	two points is (R & A) 0 1, -2, 4, -8, A) AP $A = \{x : x \in N; A\}$ A) $A = \{0\}$ Discriminant of (A) $b^2 - 4ac$ The ratios of correst	B) 1 B) 1 B) 1 B) GP $x \le 0$ then (Comm B) $A = 0$ $\alpha x^2 + \beta x + \gamma = 0$ (P.3 B) $\sqrt{b^2 - 4ac}$	C) -1 C) Both C) A = $\{\phi\}$ S.) C) β^2 - $4\alpha\gamma$ and constants in 2 two	D) not define D) None of D) $A = \phi$ D) $\beta^2 + 40$	(ned (these (ζ)		
24. 25. 26.	two points is (R & A) 0 1, -2, 4, -8, A) AP $A = \{x : x \in N; A\}$ A) $A = \{0\}$ Discriminant of (A) $b^2 - 4ac$ The ratios of correst	B) 1 B) 1 B) 1 B) GP $x \le 0$ then (Comm B) $A = 0$ $\alpha x^2 + \beta x + \gamma = 0$ (P.1 B) $\sqrt{b^2 - 4ac}$ ponding co-efficients the equations show the	C) -1 C) Both C) A = $\{\phi\}$ S.) C) β^2 - $4\alpha\gamma$ and constants in 2 two	D) not define D) None of D) $A = \phi$ D) $\beta^2 + 40$ o variable linear	(ned (these (ζ)		