NATIONAL BOARD FOR HIGHER MATHEMATICS

M. A. and M.Sc. Scholarship Test

September 20, 2008

Time Allowed: 150 Minutes

Maximum Marks: 30

Please read, carefully, the instructions on the following page

·mainavidya.com

INSTRUCTIONS TO CANDIDATES

- Please ensure that this question paper booklet contains 8 numbered (and printed) pages. The reverse of each printed page is blank and can be used for rough work.
- There are three parts to this test: Algebra, Analysis and Geometry. Each part consists of 10 questions adding up to 30 questions in all.
- Answer each question, as directed, in the space provided for it in the **answer booklet**, which is being supplied separately. This question paper is meant to be retained by you and so do not answer questions on it.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or more than one statement may qualify. Write **none** if none of the statements qualify, or list the labels of **all** the qualifying statements (amongst (a),(b) and (c)).
- Points will be awarded in the above questions only if **all** the correct choices are made. There will be no partial credit.
- N denotes the set of natural numbers, \mathbb{Z} the integers, \mathbb{Q} the rationals, \mathbb{R} the reals and \mathbb{C} the field of complex numbers. \mathbb{R}^n denotes the n-dimensional Euclidean space. The symbol]a,b[will stand for the open interval $\{x \in \mathbb{R} \mid a < x < b\}$ while [a,b] will stand for the corresponding closed interval; [a,b[and]a,b[will stand for the corresponding left-closed-right-open and left-open-right-closed intervals respectively. The symbol I will denote the identity matrix of appropriate order. All logarithms, unless specified otherwise, are to the base e.
- Calculators are not allowed.

Section 1: Algebra

1.1 Let α, β and γ be the roots of the polynomial

$$x^3 + 2x^2 - 3x - 1$$
.

Compute:

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}.$$

1.2 Let G be a cyclic group of order 8. How many of the elements of G are generators of this group?

1.3 Which of the following statements are true?

- (a) Any group of order 15 is abelian.
- (b) Any group of order 25 is abelian.
- (c) Any group of order 55 is abelian.

1.4 A real number is said to be algebraic if it is the toot of a non-zero polynomial with integer coefficients. Which of the following real numbers are algebraic?

- (a) $\cos \frac{2\pi}{5}$
- (b) $e^{\frac{1}{2}\log 2}$
- (c) $5^{\frac{1}{7}} + 7^{\frac{1}{5}}$

1.5 Let $\mathbb{Z} + \sqrt{3}\mathbb{Z}$ denote the ring of numbers of the form $a + b\sqrt{3}$, where a and $b \in \mathbb{Z}$. Find the condition that $a + b\sqrt{3}$ is a unit in this ring.

1.6 Let \mathbb{F}_p denote the field $\mathbb{Z}/p\mathbb{Z}$, where p is a prime. Let $\mathbb{F}_p[x]$ be the associated polynomial ring. Which of the following quotient rings are fields?

- (a) $\mathbb{F}_5[x]/\{x^2+x+1\}$
- (b) $\mathbb{F}_2[x]/\{x^3+x+1\}$
- (c) $\mathbb{F}_3[x]/\{x^3+x+1\}$

1.7 Let G denote the group of invertible 2×2 matrices with entries from \mathbb{F}_2 (the group operation being matrix multiplication). What is the order of G?

1.8 Let A be a 3×3 upper triangular matrix with real entries. If $a_{11} = 1, a_{22} = 2$ and $a_{33} = 3$, determine α, β and γ such that

$$A^{-1} = \alpha A^2 + \beta A + \gamma I.$$

3

- **1.9** Let V be a vector space such that $\dim(V) = 5$. Let W and Z be subspaces of V such that $\dim(W) = 3$ and $\dim(Z) = 4$. Write down all possible values of $\dim(W \cap Z)$.
- **1.10** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map which maps each point in \mathbb{R}^2 to its reflection on the x-axis. What is the determinant of T? What is its trace?

·Milavidya.com

Section 2: Analysis

2.1 Evaluate:

$$\lim_{x \to 0} (1 - \sin x \cos x)^{\cos 2x}.$$

2.2 Evaluate:

$$\lim_{n \to \infty} \frac{1}{n^6} \sum_{k=1}^n k^5.$$

2.3 Determine if each of the following series is absolutely convergent, conditionally convergent or divergent:

(a)

$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}, \ x \in \mathbb{R}.$$

(b)

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}.$$

(c)

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}.$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+3}.$$

2.4 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a mapping such that f(0,0) = 0. Determine which of the following are jointly continuous at (0,0):

(a)

$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}, (x,y) \neq (0,0).$$

(b)

$$f(x,y) = \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0).$$

(c)

$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x} & \text{if } xy \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

2.5 Which of the following functions are uniformly continuous?

- (a) $f(x) = \sin^2 x, \ x \in \mathbb{R}$.
- (b) $f(x) = x \sin \frac{1}{x}, x \in]0,1[$. (c) $f(x) = x^2, x \in \mathbb{R}$.

2.6 Which of the following maps are differentiable everywhere?

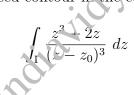
- (a) $f(x) = |x|^3 x, \ x \in \mathbb{R}$.
- (b) $f: \mathbb{R} \to \mathbb{R}$ such that $|f(x) f(y)| \le |x y|^{\sqrt{2}}$ for all x and $y \in \mathbb{R}$. (c) $f(x) = x^3 \sin \frac{1}{\sqrt{|x|}}$ when $x \ne 0$ and f(0) = 0.

2.7 Pick out the true statements:

- (a) If the series $\sum_n a_n$ and $\sum_n b_n$ are convergent, then $\sum_n a_n b_n$ is also convergent.
- (b) If the series $\sum_n a_n$ is convergent and if $\sum_n b_n$ is absolutely convergent, then $\sum_n a_n b_n$ is absolutely convergent.
- (c) If the series $\sum_n a_n$ is convergent, $a_n \geq 0$ for all n, and if the sequence $\{b_n\}$ is bounded, then $\sum_n a_n b_n$ is absolutely convergent.
- 2.8 Write down an equation of degree four satisfied by all the complex fifth roots of unity.
- **2.9** Evaluate:

$$2\sin\left(\frac{\pi}{2}+i\right)$$
 contour in the complex p

 ${\bf 2.10}$ Let Γ be a simple closed contour in the complex plane described in the positive sense. Evaluate



when

- (a) z_0 lies inside Γ , and
- (b) z_0 lies outside Γ .

Section 3: Geometry

3.1 What is the locus of a point which moves in the plane such that the product of the squares of its distances from the coordinate axes is a positive constant?

3.2 Let

$$x(t) = \frac{1-t^2}{1+t^2}$$
 and $y(t) = \frac{2t}{1+t^2}$.

What curve does this represent as t varies over [-1, 1]?

3.3 Consider the line 2x - 3y + 1 = 0 and the point P = (1, 2). Pick out the points that lie on the same side of this line as P.

- (a) (-1,0)
- (b) (-2,1)
- (c)(0,0)

3.4 Consider the points A=(0,1) and B=(2,2) in the plane. Find the coordinates of the point P on the x-axis such that the segments AP and BP make the same angle with the normal to the x-axis at P.

3.5 Let $K = \{(x,y) \mid |x| + |y| \le 1\}$ Let P = (-2,2). Find the point in K which is closest to P.

3.6 Let S be the sphere in \mathbb{R}^3 with centre at the origin and of radius R. Write down the unit outward normal vector to S at a point (x_1, x_2, x_3) on S.

3.7 Pick out the sets which are bounded:

- (a) $\{(x,y) \mid x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1\}.$
- (b) $\{(x,y) \mid (x+y)(x-y) = 2\}.$
- (c) $\{(x,y) | x+2y \ge 2, 2x+5y \le 10, x \ge 0, y \ge 0\}.$

 $\bf 3.8$ Find the length of the radius of the circle obtained by the intersection of the sphere

$$x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$$

7

and the plane x + 2y + 2z - 20 = 0.

3.9 Let λ_1 and λ_2 be the eigenvalues of the matrix

$$\left[\begin{array}{cc} a & h \\ h & b \end{array}\right].$$

Assume that $\lambda_1 > \lambda_2 > 0$. Write down the lengths of the semi-axes of the ellipse

$$ax^2 + 2hxy + by^2 = 1$$

as functions of λ_1 and λ_2 .

- **3.10** Let V be the number of vertices, E, the number of edges and F, the number of faces of a polyhedron in \mathbb{R}^3 . Write down the values of V, E, F and V - E + F for the following polyhedra:
- (a) a tetrahedron.
- (b) a pyramid on a square base.
- ·Indiavidya.com (c) a prism with a triangular cross section.