indiavidya.com

NATIONAL BOARD FOR HIGHER MATHEMATICS

M. A. and M.Sc. Scholarship Test

September 22, 2007
Time Allowed: 150 Minutes
Maximum Marks: 45

Please read, carefully, the instructions on the following page

indiavidya.com

INSTRUCTIONS TO CANDIDATES

- Please ensure that this question paper booklet contains 11 numbered (and printed) pages. The reverse of each printed page is blank and can be used for rough work.
- There are three parts to this test: Algebra, Analysis and Geometry. Each part consists of $\mathbf{1 5}$ questions adding up to $\mathbf{4 5}$ questions in all.
- Answer each question, as directed, in the space provided for it in the answer booklet, which is being supplied separately. This question paper is meant to be retained by you and so do not answer questions on it.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or more than one statement may qualify. Write none if none of the statements qualify, or list the labels of all the qualifying statements (amongst (a),(b) and (c)).
- Points will be awarded in the above questions only if all the correct choices are made. There will be no partial credit.
- \mathbb{N} denotes the set of natural numbers, \mathbb{Z} - the integers, \mathbb{Q} - the rationals, \mathbb{R} - the reals and \mathbb{C} - the fierd of complex numbers. \mathbb{R}^{n} denotes the n dimensional Euclidean space. The symbol $] a, b[$ will stand for the open interval $\{x \in \mathbb{R} \mid a<x<b\}$ while $[a, b]$ will stand for the corresponding closed interval; $[a, b$ and $] a, b]$ will stand for the corresponding left-closed-right-open ana left-open-right-closed intervals respectively. The symbol I will denote the identity matrix of appropriate order.

indiavidya.com

Section 1: Algebra

1.1 Let A be the matrix

$$
A=\left(\begin{array}{cc}
1 & \sqrt{2} \\
-\sqrt{2} & -1
\end{array}\right)
$$

Compute the matrix $B=3 A-2 A^{2}-A^{3}-5 A^{4}+A^{6}$.
1.2 How many elements of order 2 are there in the group

$$
(\mathbb{Z} / 4 \mathbb{Z})^{3} ?
$$

1.3 Consider the permutation π given by

$$
\begin{array}{lllllllllll}
n & =1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\pi(n) & =5 & 7 & 8 & 10 & 6 & 1 & 2 & 4 & 9 & 3
\end{array}
$$

Find the order of the permutation π.
1.4 Consider the system of simultaneous equations

$$
\begin{aligned}
2 x-2 y-3 z & =a_{1} \\
-2 x+2 y-3 z & =a_{2} \\
4 x-4 y+5 z & =a_{3}
\end{aligned}
$$

Write down the condition to betisfied by a_{1}, a_{2}, a_{3} for this system NOT to have a solution.
1.5 Write down a polynomial of degree 4 with integer coefficients which has $\sqrt{3}+\sqrt{5}$ as a root.
1.6 A finite group G acts on a finite set X, the action of $g \in G$ on $x \in X$ being denoted by $g x$. For each $x \in X$ the stabiliser at x is the subgroup $G_{x}=\{g \in G: g x=x\}$. If $x, y \in G$ and if $y=g x$, then express G_{y} in terms of G_{x}.
1.7. Write down the last two digits of 9^{1500}.

indiavidya.com

1.8 A permutation matrix A is a nonsingular square matrix in which each row has exactly one entry $=1$, the other entries being all zeros. If A is an $n \times n$ permutation matrix, what are the possible values of determinant of A ?
1.9 Let V be the vector space of all polynomials of degree at most equal to $2 n$ with real coefficients. Let V_{0} stand for the vector subspace $V_{0}=\{P \in V$: $P(1)+P(-1)=0\}$ and V_{e} stand for the subspace of polynomials which have terms of even degree alone. If $\operatorname{dim}(U)$ stands for the dimension of a vector space U, then find $\operatorname{dim}\left(V_{0}\right)$ and $\operatorname{dim}\left(V_{0} \cap V_{e}\right)$.
1.10 Let a, b, m and n be integers, m, n positive, $a m+b n=1$. Find an integer x (in terms of a, b, m, n, p, q) so that

$$
\begin{aligned}
& x \equiv p \quad(\bmod m) \\
& x \equiv q \quad(\bmod n)
\end{aligned}
$$

where p and q are given integers.
1.11 In the ring $\mathbb{Z} / 20 \mathbb{Z}$ of integers modulo 20 , does the equivalence class $\overline{17}$ have a multiplicative inverse? Write down an inverse if your answer is yes.
1.12 Let $\mathbb{R}[x]$ be the ring of polynomiâ min the inderminate x over the field of real numbers and let \mathcal{J} be the idear generated by the polynomial $x^{3}-x$. Find the dimension of the vector space $\mathbb{R}[x] / \mathcal{J}$.
1.13 In the ring of polynomile $R=Z_{5}[x]$ with coefficients from the field \mathbb{Z}_{5}, consider the smallest ideal $1 /$ containing the polynomials,

$$
\begin{aligned}
& p_{1}(x)=x^{3}+4 x^{2}+4 x+1 \\
& p_{2}(x)=x^{2}+x+3
\end{aligned}
$$

Which of the following polynomials $q(x)$ has the property that $\mathcal{J}=q(x) R$?
(a) $q(x)=p_{2}(x)$
(b) $q(x)=x-1$
(c) $q(x)=x+1$
1.14 In how many ways can 20 indistinguishable pencils be distributed among four children $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ?

indiavidya.com

1.15 Let $w=u+i v$ and, $z=x+i y$ be complex numbers such that $w^{2}=z^{2}+1$. Then which of the following inequalities must always be true?
(a) $x \leq u$
(b) $y^{2} \leq v^{2}$
(c) $v^{2} \leq y^{2}$

indiavidya.com

Section 2: Analysis

2.1 Evaluate:

$$
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}}
$$

2.2 Evaluate:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=1}^{n} \sqrt{n^{2}-k^{2}}
$$

2.3 Pick out the uniformly continuous functions from the following and, in such cases, given $\varepsilon>0$, find $\delta>0$ explicitly as a function of ε so that $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta$.
(a) $f(x)=\sqrt{x}, 1 \leq x \leq 2$.
(b) $f(x)=x^{3}, x \in \mathbb{R}$.
(c) $f(x)=\sin ^{2} x, x \in \mathbb{R}$.
2.4 Which of the following functions are difierentiable at $x=0$?
(a)

$$
f(x)= \begin{cases}x^{2}, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational. }\end{cases}
$$

(b) $f(x)=|x| x$.
(c)

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

2.5 Find the coefficient of x^{7} in the Maclaurin series expansion of the function $f(x)=\sin ^{-1} x$.

2.6 Compute

$$
f(x)=\lim _{n \rightarrow \infty} n^{2} x\left(1-x^{2}\right)^{n}
$$

where $0 \leq x \leq 1$.

indiavidya.com

2.7 Which of the following series are convergent?
(a)

$$
\sum_{n=1}^{\infty} \sqrt{\frac{2 n^{2}+3}{5 n^{3}+7}}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{(n+1)^{n}}{n^{n+\frac{3}{2}}}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{1}{n}\right)
$$

2.8 Find the interval of convergence of the series:

$$
\sum_{n=1}^{\infty} \frac{\log (n+1)}{\sqrt{n+1}}(x-5)^{n}
$$

2.9 Evaluate:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x}
$$

2.10 Examine for maxima and minina:

$$
f(x, y) \Delta x^{2}+5 y^{2}-6 x+10 y+6
$$

2.11 Find the point(s) on the parabola $2 x^{2}+2 y=3$ nearest to the origin. What is the shortest distance?
2.12 Let S be the triangular region in the plane with vertices at $(0,0),(1,0)$ and $(1,1)$. Let $f(x, y)$ be a continuous function. Express the double integral $\iint_{S} f(x, y) d A$ in two different ways as iterated integrals (i.e. in the forms $\int_{\alpha}^{\beta} \int_{\gamma(x)}^{\delta(x)} f(x, y) d y d x$ and $\int_{a}^{b} \int_{c(y)}^{d(y)} f(x, y) d x d y$.)
2.13 Let $\omega \neq 1$ be a seventh root of unity. Write down a polynomial equation of degree ≤ 6 satisfied by ω.

indiavidya.com

2.14 Let $z=x+i y$. Which of the following functions are analytic in the entire complex plane?
(a) $f(x, y)=e^{x}(\cos y-i \sin y)$.
(b) $f(x, y)=e^{-x}(\cos y-i \sin y)$.
(c) $f(x, y)=\min \left\{2, x^{2}+y^{2}\right\}$.
2.15 Let C denote the boundary of the square whose sides are given by the lines $x= \pm 2$ and $y= \pm 2$. Assume that C is described in the positive sense, i.e., anticlockwise. Evaluate:

$$
\int_{C} \frac{\cos z d z}{z\left(z^{2}+8\right)}
$$

indiavidya.com

Section 3: Geometry

3.1 Let A be the point $(0,4)$ in the $x y$-plane and let B be the point $(2 t, 0)$. Let L be the mid point of $A B$ and let the perpendicular bisector of $A B$ meet the y-axis at M. Let N be the mid-point of $L M$. Find the locus of N (as t varies).
3.2 Let $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ be three non-collinear points in the $x y$ plane. Let r, s and t be three real numbers such that (i) $r+s+t=0$, (ii) $r a_{1}+s b_{1}+t c_{1}=0$ and (iii) $r a_{2}+s b_{2}+t c_{2}=0$. Write down all the possible values of r, s and t.
3.3 Consider the equation $2 x+4 y-x^{2}-y^{2}=5$. Which of the following does it represent?
(a) a circle.
(b) an ellipse.
(c) a pair of straight lines.
3.4 Write down the equations of the circles ofradus 5 passing through the origin and having the line $y=2 x$ as a tangent.
3.5 Two equal sides of an isoceles triang'e are given by the equations $y=7 x$ and $y=-x$. If the third side passes trirough the point $(1,-10)$, pick out the equation(s) which cannot represent that side.
(a) $3 x+y+7=0$.
(b) $x-3 y-31=0$.
(c) $x+3 y+29=0$.
3.6 Let $m \neq 0$. Consider the line $y=m x+\frac{a}{m}$ and the parabola $y^{2}=4 a x$. Pick out the true statements.
(a) The line intersects the parabola at exactly one point.
(b) The line intersects the parabola at two points whenever $|m|<2 \sqrt{a}$.
(c) The line is tangent to the parabola only when $|m|=2 \sqrt{a}$.
3.7 Consider the circle $x^{2}+(y+1)^{2}=1$. Let a line through the origin O meet the circle again at a point A. Let B be a point on $O A$ such that $O B / O A=p$, where p is a given positive number. Find the locus of B.

indiavidya.com

3.8 Let $a>0$ and $b>0$. Let a straight line make an intercept a on the x-axis and b on the line through the origin which is inclined at an angle θ to the x axis, both in the first quadrant. Write down the equation of the straight line.
3.9 What does the following equation represent?

$$
12 x^{2}+7 x y-10 y^{2}+13 x+45 y-35=0 .
$$

3.10 Find the coordinates of the centre of the circumcircle of the triangle whose vertices are the points $(4,1),(-1,6)$ and $(-4,-3)$.
3.11 Let A and B be the points of intersection of the circles $x^{2}+y^{2}-4 x-5=0$ and $x^{2}+y^{2}+8 y+7=0$. Find the centre and radius of the circle whose diameter is $A B$.
3.12 Ten points are placed at random in the unit scruare. Let ρ be the minimum distance between all pairs of distinct points from this set. Find the least upper bound for ρ.
3.13 Let K be a subset of the plane. 10 is said to be convex if given any two points in K, the line segment joinims them is also contained in K. It is said to be strictly convex if given ait two points in K, the mid-point of the line segment joining them lies in the interior of K. In each of the following cases determine whether the given set is convex (but not strictly convex), strictly convex or not convex.
(a) $K=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
(b) $K=\{(x, y)| | x|+|y| \leq 1\}$.
(c) $K=\left\{(x, y) \left\lvert\, x^{\frac{2}{3}}+y^{\frac{2}{3}} \leq 1\right.\right\}$.
3.14 Consider the set $K=\{(x, y)| | x|+|y| \leq 1\}$ in the plane. Given a point A in the plane, let $P_{K}(A)$ be the point in K which is closest to A. Let $B=(1,0) \in K$. Determine the set

$$
S=\left\{A \mid P_{K}(A)=B\right\}
$$

indiavidya.com

3.15 Let A, B, C, D and E be five points on a circle and let a, b, c, d and e be the angles as shown in the figure above. Which of the following equals the ratio $\mathrm{AD} / \mathrm{BE}$?
(a) $\frac{\sin (a+d)}{\sin (b+e)}$.
(b) $\frac{\sin (b+c)}{\sin (c+d)}$.
(c) $\frac{\sin (a+b)}{\sin (b+c)}$.

