A1FFహ2012

Andhra Pradesh

Time: 3 Hours
Date : 29-04-2012

CHEMISTRY

1. The pH of 0.1 molar solution of the acid HQ is 3 . The value of the ionization constant, Ka of this acid is
1) 1×10^{-5}
2) 1×10^{-7}
3) 3×10^{-1}
4) 1×10^{-3}
2. Which among the following will be named as dibromidobis (ethylene diamine) ehromium(H)bromide?
1) $\left[\mathrm{Cr}(\mathrm{en}) \mathrm{Br}_{4}\right]^{-}$
2) $\left[\mathrm{Cr}\right.$ (en) $\left.\mathrm{Br}_{2}\right] \mathrm{Br}$
3) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right] \mathrm{Br}_{3}$
4) $\left[\mathrm{Cr}(\mathrm{en})_{2} \mathrm{Br}_{2}\right] \mathrm{Br}$
3. Which method of purification is represented by the following equation:
$\mathrm{Ti}(\mathrm{s})+2 \mathrm{I}_{2}(\mathrm{~g}) \xrightarrow{523 \mathrm{~K}} \mathrm{TiI}_{4}(\mathrm{~g}) \xrightarrow{1700 \mathrm{~K}} \mathrm{Ti}(\mathrm{s})+2 \mathrm{I}_{2}(\mathrm{~g})$
1) Poling
2) Van Arkel
3) Zone refining
4) Cupellation
4. The compressibility factor for a real gas at high pressure is
1) $1+\mathrm{pb} / \mathrm{RT}$
2) $1-\mathrm{pb} / \mathrm{RT}$
3) $1+R \mathrm{t} / \mathrm{pb}$
4) 1
5. The increasing order of the ionic radii of the given isoelectronic species is
1) $\mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{\prime}, \mathrm{S}^{2-}$
2) $\mathrm{K}^{+}, \mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$
3) $\mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{S}^{2-}$
4) $\mathrm{S}^{2-}, \mathrm{Cl}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}$
6. The species which can brest serve as an initiator for the cationic polymerization is
1) AlCl_{3}
2) BuLi
3) LiAlH_{4}
4) HNO_{3}
7. The molecule having smallest bond angle is
1) SbCl_{3}
2) PCl_{3}
3) NCl_{3}
4) AsCl_{3}
8. The equilibrium constant $\left(\mathrm{K}_{\mathrm{C}}\right)$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$ at temperature T is 4×10^{-4}. The value of K_{c} for the reaction, $\mathrm{NO}(\mathrm{g}) \rightarrow \frac{1}{2} \mathrm{~N}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ at the same temperature is
1) 4×10^{-4}
2) 50.0
3) 0.02
4) 2.4×10^{2}
9. Iron exhinits +2 and +3 oxidation states. Which of the following statements about iron is incorrect ?
1) Ferrous compounds are less volatile than the corresponding ferric compounds
2) Ferrous compounds are more easily hydrolysed than the corresponding ferric compounds
3) Ferrous oxide is more basic in nature than the ferric oxide.
4) Ferrous compounds are relatively more ionic than the corresponding ferric compounds
10. The electrons identified by quantum numbers n and 1
a) $n=4, I=1$
b) $\mathrm{n}=4,1=0$
1) (b) $<$ (d) $<$ (a) $<$ (c)
2) (a) $<$ (c) $<$ (b) $<$ (d)
3) $n=3,1=2$
4) (c) $<$ (d) $<$ (b) $<$ (a)
5) $n 3, I=1$
6) (d) $<$ (b) $<$ (c) $<$ (a)
11. Which branched chain isomer of the hydrocarbon with molecular mass 72 u gives only one isomer of mono substituted alkyl halide?
1) Isohexane
2) Neohexane
3) Tertiary butyl chloride 4) Neopentane
12. Which one of the following statements is correct?
1) All amino acids except glycine are optically active
2) All amino acids except glutamic acid are optically active
3) All amino acids except lysine are optically active
4) All amino acids are optically active
13. 2-Hexyne gives trans - 2 - Hexene on treatment with
1) $\mathrm{Pd} / \mathrm{BaSO}_{4}$
2) LiAlH_{4}
3) $\mathrm{Pt} / \mathrm{H}_{2}$
4) $\mathrm{Li} / \mathrm{NH}_{3}$
14. Iodoform can be prepared from all except
1) 3-Methyl-2 - butanone
2) Isobutyl alcohol
3) Ethyl methyl ketone
4) Isopropyl alcohol
15. The incorrect expression among the following is
1) $\ln \mathrm{K}=\frac{\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}}{\mathrm{RT}}$
2) $K=e^{-\Delta G^{0} / R T}$
3) $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
4) In isothermal process
16. The standard reduction potentials for $\mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Ni}^{2+} / \mathrm{Ni}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ ae $-0.76,-0.23$ and -0.44 V respectively. The reaction $\mathrm{X}+\mathrm{Y}^{2+} \rightarrow \mathrm{X}^{2+}+\mathrm{Y}$ will be spontaneous when
1) $X=F e, Y Z n$
2) $X=Z n, Y=N i$
3) $X=N i, Y=F e$
4) $\mathrm{X}=\mathrm{Ni}, \mathrm{Y}=\mathrm{Zn}$
17. Lithium forms body centred cubic structure. The length of the side of its unit cell is 351 pm . Atomic radius of the lithium will be
1) 240 pm
2) 152 pm
3) 75 pm
4) 300 pm
18. How many chiral compounds are possible on monochlorination of 2 - methyl butane ?
1) 4
2) 6
3) 8
4) 2
19. K_{f} for water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. If your automibile radiator holds 1.0 kg of water, how many grams of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ must you add to get the freezing point of the solution lowered to $-2.8^{0} \mathrm{C}$?
1) 39 g
2) 27 g
3) 72 g
4) 93 g
20. In which of the following pairs the two species are not isostructural ?
1) PF_{5} and BrF_{5}
2) $\mathrm{AlF}_{6}{ }^{3-}$ and SF_{6}
3) $\mathrm{CO}_{3}{ }^{2}$ and NO_{3}^{-}
4) PCl_{4}^{+}and SiCl_{4}
21. For a first order reaction, (A) products, the cencentration of A changes from 0.1 M to 0.025 M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M , is
1) $3.47 \times 10^{-5} \mathrm{M} / \mathrm{min}$
2) $1.73 \times 10^{-4} \mathrm{M} / \mathrm{min}$
3) $1.73 \times 10^{-5} \mathrm{M} / \mathrm{min}$
4) $3.47 \times 10^{-4} \mathrm{M} / \mathrm{min}$
22. Ortho - Nitrophenol is less soluble in water than $\mathrm{p}-$ and $\mathrm{m}-$ Nitrophenols because
1) o - Nitrophenol shows Intermolecular H - bonding
2) Melting point of o - Nitrophenol is lower than those of m - and p - isomers
3) o-Nitrophenol is more volatile in steam than those of m - and p - isomers
4) o - nitrophenol shows Intramolecular H - bonding
23. In the given transformation, which of the following is the most appropriate reagent ?

1) Na , Liq. NH_{3}
2) NaBH_{4}
3) $\mathrm{NH}_{2} \mathrm{NH}_{2}, \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
4) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
24. According to Freundlich adsorption isotherm, which of the following is correct?
1) $\frac{X}{m} \propto p^{1 / n}$
2) $\frac{x}{m} \propto p^{0}$
3) $\frac{x}{m} \propto p^{1}$
4) All the above are correct for different ranges of pressure
25. The density of a solution prepared by dissolving 120 g of urea (mol. mass $=60 \mathrm{u}$) in 1000 g of water is 1.15 g / mL. The molarity of this solution is
1) 1.02 M
2) 2.05 M
3) 0.50 M
4) 1.78 M
26. Which of the following on thermal decomposition yields a basic as well as an acidic oxide ?
1) CaCO_{3}
2) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
3) NaNO_{3}
4) KClO_{3}
27. Aspirin is known as
1) Acetyl salicylate
2) Methyl salicylic acid
3) Acetyl salicylic acid
4) Phenyl salicylate
28. Which of the following compounds can be detected by Molisch's test ?
1) Amines
2) Primary alcohols
3) Nitro compounds
4) Sugars
29. What is DDT among the following
1) Biodegradable pollutant
2) Greenhouse gas
3) Non-biodegradable pollutant
4) Afertilizer
30. Very pure hydrogen (99.9%) can be made by which of the following processes?
1) Electrolysis of water
2) Reaction of salt like hydrides with water
3) Reaction of methane with steam
4) Mixing natural hydrocarbons of high molecular weight

MATHEMATICS

31. Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c}=\hat{a}+2 \hat{b}$ and $\vec{d}=5 \hat{a}-4 \hat{b}$ are perpendicular to each other, then the angel between \hat{a} and \hat{b} is.
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{2}$
32. If the integral $\int \frac{5 \tan x}{\tan x-2} d x=x+a \ln |\sin x-2 \cos x|+k$ then a is equal to.
(1) 1
(2) 2
(3) -1
(4) -2
33. Consider the function, $f(x)=|x-2|+|x-5|, x \mid \in R$.

Statement 1: $f^{\prime}(4)=0$
Statement 2: f is continuous in differentiable in $(2,5)$ and $f(2)=f(5)$.
(1) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement 1.
(2) Statement 1 is true, Statement 2 is false.
(3) Statement 1 is false, Statement 2 is true.
(4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1.
34. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$, then k equals.
(1) 6
(2) $11 / 5$
(3) $29 / 5$
(4) 5
35. Statement 1: An equation of a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4$ is $y=2 x+2 \sqrt{3}$.

Statement 2: If the line $y=m x+\frac{4 \sqrt{3}}{m},(m \neq 0)$ is a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4$, then m satisfies $m^{4}+2 m^{2}=24$.
(1) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
(2) Statement 1 is true, Statement 2 is false.
(3) Statement 1 is false, Statement 2 is true.
(4) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
36. Three numbers are chosen at random without replacement from $\{1,2,3, \ldots, 8\}$. The probability that their minimum is 3 , given that their maximum is 6 , is.
(1) $\frac{1}{4}$
(2) $\frac{2}{5}$
(3) $\frac{3}{8}$
(4) $\frac{1}{5}$
37. Let ABCD be a parallelogram such that $\overrightarrow{A B}=\vec{\phi}, \overrightarrow{A D}=\vec{p}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD , then \vec{r} is given by.
(1) $\vec{r}=\vec{q}-\left(\frac{\vec{p}-\vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$
(2) $\vec{r}=-3 \vec{q}+\frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$
(3) $\vec{r}=3 \vec{q}-\frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$
(4) $\vec{r}=-\vec{q}+\frac{(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$
38. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is.
(1) $x-2 y+2 z-1=0$
(2) $x-2 y+2 z+5=0$
(3) $x-2 y+2 z-3=0$
(4) $x-2 y+2 z+1=0$
39. In a $\triangle P Q R$, if $3 \sin P+4 \cos Q=6$ and $4 \sin Q+3 \cos P=1$, then the angle R is equal to.
(1) $\frac{\pi}{4}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{6}$
40. If $f: R \rightarrow R$ is a function defined by $f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$, where $[x]$ denotes the greatest integer function, then f is.
(1) discontinuous only at non-zero integral values of x.
(2) continuous only at $x=0$.
(3) continuous for every real x.
(4) discontinuous only at $x=0$.
41. Statement 1 : The sum of the series
$1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots+(361+380+400)$ is 8000 .
Statement 2: $\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$, for any natural number in.
(1) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
(2) Statement 1 is true, Statement 2 is false.
(3) Statement 1 is false, Statement 2 is true.
(4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1.
42. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$ is.
(1) $6 / 5$
(2) $5 / 3$
(3) $10 / 3$
(4) $3 / 5$
43. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that $A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to.
(1) $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
(2) $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$
(3) $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
(4) $\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
44. If n is a positive integer, then $(\sqrt{3}+1)^{2 n}-(\sqrt{3}-1)^{2 n}$ is.
(1) an even positive integer
(2) a rational number other than positive integer $\$$
(3) an irrational number
(4) an odd positive integer
45. Assuming the balls to be identical except for difference in coloursm the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is.
(1) 630
(2) 879
(3) 880
(4) 629
46. An ellipse the drawn by taking a diameter of the circle $(x-1)^{2}+y^{2}=1$ as its semiminor axis and a diameter of the circle $x^{2}+(y-2)^{2}=4$ as its semi - major axis. if the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is.
(1) $4 x^{2}+y^{2}=8$
(2) $x^{2}+4 y^{2}=16$
(3) $4 x^{2}+y^{2}=4$
(4) $x^{2}+4 y^{2}=8$
47. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then k is equal
(1) $\frac{9}{2}$
(2) 0
(3) -1
(4) $\frac{2}{9}$
48. Let $a, b \in R$ be such that the function f given by $f(x)=\ln |x|+b x^{2}+a x, x \neq 0$ has extreme values at $x=-1$ and $x=2$.

Statement 1: f has local maximum at $x=-1$ and at $x=2$.
Statement 2: $a=\frac{1}{2}$ and $b=\frac{-1}{4}$.
(1) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement 1.
(2) Statement 1 is true, Statement 2 is false.
(3) Statement 1 is false, Statement 2 os true.
(4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1.
49. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies.
(1) either on the real axis or on a circle not passing through the origin.
(2) on the imaginary axis.
(3) either on the real axis or on a circle passing through the origin.
(4) on a circle with centre at the origin.
50. The negation of the statement
"If I become a teacher, then I will open a school', is :
(1) Neither I will become a teacher nor I will open a school.
(2) I will not become a teacher or I will open a school.
(3) I will become a teacher and I will not open a school.
(4) Either I will not become a teacher or I will not open a school.
51. If $g(x)=\int_{0}^{x} \cos 4 t d t$, then $g(x+\pi)$ equals:
(1) $g(x)-g(\pi)$
(2) $g(x) \cdot g(\pi)$
(3) $\frac{g(x)}{g(\pi)}$
(4) $g(x)+g(\pi)$
52. A spherical balloon is filled with 4500π cubic neters of helium gas. If a leak in the balloon causes the gas to escape at the ratio of 72π cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is.
(1) $2 / 9$
(2) $9 / 2$
(3) $9 / 7$
(4) $7 / 9$
53. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has.
(1) exactly one real root
(3) infinite number of real roots
(2) exactly four real roots
(4) no real roots
54. Let $X=\{1,2,3,4,5\}$. The number of different ordered pairs (Y, Z) that can be formed such that $Y \subseteq X, Z \subseteq X$ and $Y \cap Z$ is empty is.
(1) 2^{5}
(2) 5^{3}
(3) 5^{2}
(4) 3^{5}
55. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$, and the straight line $y=2$.
(1) $\frac{20 \sqrt{2}}{3}$
(2) $10 \sqrt{2}$
(3) $20 \sqrt{2}$
(4) $\frac{10 \sqrt{2}}{3}$
56. Let P and Q be 3×3 matrices with $P \neq Q$. If $P=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to.
(1) 0
(2) -1
(3) -2
(4) 1
57. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n observations, and let \bar{x} be their arithmetic mean and σ^{2} be their variance.

Statement 1: Variance of $2 x_{1}, 2 x_{2}, \ldots, 2 x_{n}$ is $4 \not^{2}$.
Statement 2: Arithmetic mean of $2 x_{1}, 2 x_{2}, \ldots . ., 2 x_{n}$ is $4 \bar{x}$.
(1) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
(2) Statement 1 is true, Statement 2 is false.
(3) Statement 1 is false, Statement 2 is true.
(4) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
58. The population $p(t)$ at time t of a certain mouse species satisfies the differential equation $\frac{d p(t)}{d t}=0.5 p(t)-450$. If $p(0)=850$, then the time at which the population becomes zero is.
(1) $\frac{1}{2} \ln 18$
(2) $\ln 18$
(3) $2 \ln 18$
(4) $\ln 9$
59. A line is drawn through the point $(1,2)$ to meet the coordinate axes at P and Q such that it forms a triangle $O P Q$, where O is the origin. If the area of the triangle $O P Q$ is least, then the slope of the line PQ is.
(1) -2
(2) $-1 / 2$
(3) $-1 / 4$
(4) -4
60. If 100 times the $100^{\text {th }}$ term of an AP with non zero common different equals the 50 times its $50^{\text {th }}$ term, then the $150^{\text {th }}$ term of this AP is.
(1) 150
(2) zero
(3) -150
(4) 150 times its $50^{\text {th }}$ term

PHYSICS

61. This question has Statement 1 and Statement 2. Of the four choices given after the Statements, choose the one that best describes the two Statements.

If two springs S_{1} and S_{2} of force constants k_{1} and k_{2}, respectively, are stretched by the same force, it is found that more work is done on spring S_{1} than on spring S_{2}

Statement 1: If stretched by the same amount, work done on S_{1}, will be more than that of S_{2}
Statement 2: $k_{1}<k_{2}$

1) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of Statement 1
2) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1
3) Statement 1 is false, Statement 2 is true \quad 4) Statement 1 is true, Statement 2 is false
62. This question has Statement 1 and Statement 2. Of the four choices given after the Statements, choose the one that best describes the two Statements.
An insultating solid sphere of radius R has a uniformly positive charge density ρ. As a result of this uniform charge distribution there is a finite value of electric potential at the centre of the sphere, at the surface of the sphere and also at a point out side the sphere. The electric potential at infinity is zero.
Statement 1: When a charge ' q ' is taken from the centre of the surface of the sphere, its potential energy charges by $\frac{q \rho}{3 \epsilon_{0}}$.

Statement 2: The electric field at a distance $r(r<R)$ from the centre of the sphere is $\frac{\rho r}{3 \epsilon_{0}}$

1) Statement 1 is false Statement 2 is true.
2) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of Statement 1
3) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1
4) Statement 1 is true, Statement 2 is false
63. A wooden wheel of radius R is made of two semicircular parts (see figure). The two parts are held together by a ring made of a metal strip of cross sectional area S and length L . L is slightly less than $2 \pi R$. To fit the ring on the wheel, it is heated so that its temperature rises by ΔT and it just steps over the wheel. As it cools down to surrounding temperature, it presses the semicircular parts together. If the coefficient of linear expansion of the metal is α, and its Young's modulus is Y , the force that one part of the wheel applies on the other part is
1) $\pi S Y \alpha \Delta T$
2) $2 S Y \alpha \Delta T$
3) $2 \pi S Y \alpha \Delta T$
4) $S Y \alpha \Delta T$
64. A diatomic molecle is made of two masses m_{1} and m_{2} which are separated by a distance r. If we calculate its rotational energy by applying Bohr's rule of anqular momentum quantization, its energy will be given by (n is an integer)
1) $\frac{2 n^{2} h^{2}}{\left(m_{1}+m_{2}\right) r^{2}}$
2) $\frac{2 n^{2} h^{2}}{\left(m_{1}+m_{2}\right) r^{2}}$
3) $\frac{\left(m_{1}+m_{2}\right)^{2} n^{2} h^{2}}{2 m_{1}{ }^{2} m_{2}{ }^{2} r^{2}}$
4) $\frac{n^{2} h^{2}}{2\left(m_{1}+m_{2}\right) r^{2}}$
65. Hydrogen atom is excited from ground state to another state with principal quantum number equal to 4 . Then the number of spectral lines in the emission spectra will be
1) 5
2) 6
3) 2
4) 3
66. A radar has a power of 1 kW and is operating at a frequency of 10 GHz . It is located on a mountain top of height 500 m . The maximum distance upto which it can detect object located on the surface of the earth (Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$) is
1) 40 km
2) 64 km
3) 80 km
4) 16 km
67. Truth table for system of four NAND gates as shown in figure is

1)

A	B	Y
0	0	1
0	1	1
1	0	0
1	1	0

2)

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

3)

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

4)

A	B	Y
0	0	0
0	1	0
1	0	1
1	1	1

68. A spectrometer gives the following reading when used tomeasure the angle of a prism.

Main scale reading : 58.5 degree
Vernier scale reading: 09 divisions.
Given that 1 division on main scale corresponds to 0.5 degree. Total divisions on the vernier scale is 30 and match with 29 divisions of the main scale. The angle of the prism from the above data

1) 58.65 degree
2) 59 degree
3) 58.59 degree
4) 58.77 degree
69. This question has Statement 1 and Statement 2. Of the four choices given after the Statements, choose the one that best describes the two Statements.
Statement 1: Davisson - Germer experiment established the wave number of electrons.
Statement 2: If electrons have wave nature, they can interfere and show diffraction.
1) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of Statement 1
2) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1
3) Statement 1 is false, Statement 2 is true
4) Statement 1 is true, Statement 2 is false
70. In a uniformly charged sphere of total charge Q and radius R , the electric field E is plotted as a function of distance from the center. The graph which would correspond to the above will be
1)

2)

3)

4)

71. A cylindrical tube, open at both ends, has a fundamental frequency, f , in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of the air-column is now

1) $\frac{3 f}{4}$
2) $2 f$
3) f
4) $\frac{f}{2}$
72. If a simple pendulum has significant amplitude (up to a factor of $1 / \mathrm{e}$ of original) only in the period between $t=0 s$ to $t=\tau s$, then τ may be called the average life of the pendulum. When the spherical bob of the pendulum suffers a retardation (due to viscous drag) proportional to its velocity, with ' b ' as the constant of proportionality, the average life time of the pendulum is (assuming damping is small) in seconds.
1) $\frac{1}{b}$
2) $\frac{2}{b}$
3) $\frac{0.693}{b}$
4) b
73. A coil is suspended in a uniform magnetic field, with the plane of the coil parallel to the magnetic lines of force. When a current is passed throughthe coillit starts oscillating; it is very difficult to stop. But if an aluminium plate is placed near to the coil, it stop $\$$. this is due to
1)Shielding of magneticv lines of force as aluminium is a paramagnetic material
2) Electromagnetic induction in the aluminium plate giving rise to electromagnetic damping
3) Development of air current when the plate is placed
4) Induction of electrical charge on the plate
74.

The figure shows an experimental plot for dischatging of a capacitor in an R-C circuit. The time constant τ of this circuit lies between

1) 50 sec and 100 sec
2) 100 sec and 150 seq
3) 150 sec and 200 sec
4) 0 and 50 sec
75. A Carnot engine, whose efficiency is 40%, takes in heat from a source maintained at a temperature of 500 K . It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be
1) 750 K
2) 600 K
3) Efficiency of Carnot engine cannot be made larger than 50%
4) 1200 K
76. Two electric bulbs marked $25 \mathrm{~W}-220 \mathrm{~V}$ and $100 \mathrm{~W}-220 \mathrm{~V}$ are connected in series to a 440 V supply. Which of the bulbs will fuse?
1) 25 W
2) Neither
3) Both
4) 100 W
77. An electromagnetic wave in vacuum has the electric and magnetic fields \vec{E} and \vec{B}, which are always perpendicular to each other. The direction of polarization is given by \vec{X} and that of wave propagation by \vec{k}. Then
1) $\vec{X} \| \vec{B}$ and $\vec{k} \| \vec{E} \times \vec{B}$
2) $\vec{X} \| \vec{E}$ and $\vec{k} \| \vec{B} \times \vec{E}$
3) $\vec{X} \| \vec{B}$ and $\vec{k} \| \vec{B} \times \vec{E}$
4) $\vec{X} \| \vec{E}$ and $\vec{k} \| \vec{E} \times \vec{B}$
78. The mass of a spaceship is 100 kg . It is to be launched from the earth's surface out into free space. The value of ' g ' and 'R' (radius of earth) are $10 \mathrm{~m} / \mathrm{s}^{2}$ and 6400 km respectively. The required energy for this work will be
1) 6.4×10^{9} Joules
2) 6.4×10^{10} Joules
3) 6.4×10^{11} Joules
4) 6.4×10^{8} Joules
79. In Young's double slit experiment, one of the slit is wider than other, so that the amplitude of the lilght from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by
1) $\frac{I_{m}}{5}\left(1+4 \cos ^{2} \frac{\phi}{2}\right)$
2) $\frac{I_{m}}{9}\left(1+8 \cos ^{2} \frac{\phi}{2}\right)$
3) $\frac{I_{m}}{9}(4+5 \cos \phi)$
4) $\frac{I_{m}}{3}\left(1+2 \cos ^{2} \frac{\phi}{2}\right)$
80. A boy can throw a stone up to a maximum height of 10 m . The maximum horizontal distance that the boy can throw the same stone up to will be
1) $10 \sqrt{2} \mathrm{~m}$
2) 20 m
3) $20 \sqrt{2} m$
4) 10 m
81. Assume that a neutron breaks into a proton and an electron. The energy released during this process is (Mass of neutron $=1.6725 \times 10^{-27} \mathrm{~kg}$, Mass of proton $=1.6725 \times 10^{-27} \mathrm{~kg}$, Mass of electron $=9 \times 10^{-31} \mathrm{~kg}$)
1) 6.30 MeV
2) 5.4 MeV
3) 0.73 MeV
4) 7.10 MeV
82. An object 2.4 m in front of a lens forms a sharp image on a film 12 cm behind the lens. Aglass plate 1 cm thick, of refractive index 1.50 is interposed between lens and film with its plane faces parallel to film. At what distance (from lens) should object be shifted to be in sharp focus of film?
1) 3.2 m
2) 5.6 m
3) 7.2 m
4) 2.4 m
83. A liquid in a beaker has temperature at time t and ∇_{0} is temperature strroundings, then law of cooling the correct graph $\ldots . . . \log _{e}\left(\theta-\theta_{0}\right)$ and t is
1)

2)

3)

4)

84. Helium gas goes through a cycle ABCDA (consisting of two isochoric and two isobaric lines) as shown in figure. Efficiency of this cycle is nearly. (Assume the gas to be close to ideal gas)

1) 10.5%
2) 12.5%
3) 15.4%
4) 9.1%
85. Proton, Dauteron and alpha particle of the same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively r_{p}, r_{d} and r_{α}. Which one of the following relations is correct?
1) $r_{\alpha}>r_{d}>r_{p}$
2) $r_{\alpha}=r_{d}>r_{p}$
3) $r_{\alpha}=r_{p}=r_{d}$
4) $r_{\alpha}=r_{p}<r_{d}$
86. Resistance of a given wiere is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are 3% each, then error in the value of resistance of the wire is
1) 1%
2) 3%
3) 6%
4) Zero
87. A particle of mass m is at rest at the origin at time $t=0$. It is subjected to a force $F(t)=F_{0} e^{-b t}$ in the x direction. Its speed $v(t)$ is depicted by which of the following curves?
1)

2)

3)

88. A thin liquid film formed between a U-shaped wiee and light slider supports a weight of $1.5 \times 10^{-2} \mathrm{~N}$ (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid film is

3) $0.0125 \mathrm{Nm}^{-1}$
4) $0.1 \mathrm{Nm}^{-1}$
89. Two cars of masses m_{1} and m_{2} are moving in circles of radii r_{1} and r_{2}, respectively. Their speeds are such that they make complete circles in the same time t. The ratio of their centripetal acceleration is

1) $r_{1}: r_{2}$
2) $1: 1$
3) $m_{1} r_{1}: m_{2} r_{2}$
4) $m_{1}: m_{2}$
90. A charge Q is uniformly distributed over the surffice of non-conducting disc of radius R . The disc rotates about an axis perpendicular to its plane and passing through its centre with an angular velocity ω. As a result of this rotation a magnetic field of induction B is obtained at the centre of thedisc. If we keep both the amount of charge placed on the disc and its angular velocity to be constant and vary the radius of the disc then the variation of the magnetic induction at the centre of the dis will be represented by the figure.
1)

2)

3)

4)

