EAMCET-2010 MEDICAL-BOTANY

1.	Study	the foll	lowing	lists.									
	<u>List –</u>	<u>· I</u>				<u>List – II</u>							
	A) Th	ne oldes	t book	on agri	culture		I) Ro	bert Ho	ooke				
	B) Mi	icrograj	phia				II) Ca	amerar	ius				
	C) De	escriptio	on of se	xual re	production i	in plants	III) Van Leeuwenhock						
	D) Ro	ole of ch	romos	omes in	heredity		IV) P	arasar	a				
							V) Su	itton ar	id Bove	eri			
	The c	orrect r	natch i	S									
		\mathbf{A}	В	\mathbf{C}	D		\mathbf{A}	\mathbf{B}	\mathbf{C}	D			
	1)	II	IV	III	V	2)	IV	\mathbf{III}	V	II			
	3)	II	Ш	I	V	4)	IV	I	II	V			
2.	The f	ollowing	g plants	s are de	evoid of some	e vital org	ans. Ar	range t	hese in	the order of absence of root			
	stem,	leaf, flo	wer an	d fruit,	respectively	7							
	I) Raf	fflesia		II)	Equisetum		III) C	Ceratop	hyllum	IV) Gnetum			
	V) Ta	eniophy	yllum										
	The c	orrect o	order is	3									
		I, III, II,		,	II, IV, I, III,			II, V, IV					
3.	A tea	cher wa	ıs expla	aining a	about a plan	t whose v	enatior	ı patter	n is na	sically similar to Eryngium			
	fruit i	is berry	and st	em sho	ws signs of p	erennatio	n. He w	vas try i	ng to ai	rrive at one of the following.			
	1) Mu	ısa		2)	Brinjal		3) Glo	ory lilly		4) Mango			
1.	Study	the foll	lowing	lists.									
	<u>List –</u>	<u>· I</u>					1			<u>List – II</u>			
	A) Co	A) Cohesion among the anthers only								I) Citrus			
	B) Co	hesion	of stam	inal fila	aments only	into bu.vo	los			II) Cucurbita			
	C) Ad	lhesion	of stam	ens to	tepals					III) Allium			
	D) Ad	lhesion	of stam	ens to	sepals •					IV) Grevillea			
										V) Helianthus			
	The c	orrect r	natch i	S		Y							
		A	В	\mathbf{C}	D		\mathbf{A}	В	\mathbf{C}	D			
	1)	V	Π	IV	III	2)	IV	I	Π	V			
	3)	V	Π	IV	III	4)	V	I	\mathbf{III}	IV			
5.	From	the foll	owing,	identif	y the plants	having inf	loresce	nces wi	ith mal	e, female and sterile flowers			
	I) Cas	suarina		II)	Vernonia		III) C	olocasi	a	IV) Ficus			
	1) I, I	I		2)	II, III		3) III,	, IV		4) I, IV			
6.	Fruit	s which	break	at matı	ırity into nu	mber of p	ieces ec	qual to	the nun	nber of carpels are found in			
	I) Aris	stolochia	a	II)	<i>Datura</i>		III)D	olichos	•	IV) Abelmoschus			
	1) I, I	I		2)	II, III		3) I, I	V		4) III, IV			
7.	<u>Asser</u>	tion(A)	: In <i>Fr</i>	itillaria	, the embryo	sac is des	cribed	as tetra	sporic	type.			
	Reaso	<u>n(R)</u> : I1	ı <i>Fritill</i>	<i>laria</i> , fo	ur megaspor	e mother o	ells are	involve	ed in the	e formation of an embryo sac			
	1) Bot	h A and	R are to	rue and	R explains A	2)]	Both A	and R a	re true a	and R does not explains A			
	3) A is	true, R	is false			4) .	A is fals	se, R is t	rue				
8.	The r	ation of	compo	nents o	f male flowe	er of Smila	x, fema	le flow	er of Ru	scus, modified reproductive			
	shoot	s of <i>Scil</i>	<i>la</i> and	Tephro:	sia is								
	1) 4:	3:5:7		2)	7:5:4:3		3) 7:	3:5:4	-	4) 4:7:5:4			
9.				horts o	of the first t	wo subcla	asses of	f Dicoty	yledona	ne in Bentham and Hooker			
		fication	IS	2	0 0	2) 5	7		4) 2 · 2				
	1)1:	1) 1 : 1 2) 2 : 3					3) 5:	/	4) 3:2				

					inc	liavidy	a.co	om						
		0 Medica		•				• •	-	(B)				
10.		, ,	•	_	•				-	ost-Darwinian.				
			-			_			_	n of Species'.				
				rue and	R explains					nd R does not explains A				
	· ·	true, R i		_		ŕ	A is fals	se, R is t	rue					
11.		•			n the follo	_								
						of five types of								
	2) Ox	idation o	of fatty a	acids an	d synthesi	s of phosphol	ipids o	ccur in p	peroxiso	mes				
	3) Tel	ocentric	chromo	osome c	ontains tw	o unequal arr	ns							
	4) Sm	aller sub	-unit of	f ribosor	ne contain	s the enzyme	peptid	yl transf	erase					
12.	Activ	ity of lig	gase enz	zyme is	found in									
	1) Lep	ototene		2) 2	Zygotene		3) Pa	chytene		4) Diplotene				
13.	If the	re are 1	35 hyd	lrogen l	bonds bet	ween two st	rands	of a fra	gment	of DNA double helix wh	ich			
	conta	ins 23 G	l uanine	e nitrog	en bases,	what is its to	tal len	gth ?						
	1) 19.	$04 A^0$		2)	$190.4 A^0$		3) 19	$04 A^0$		4) 190.4 nm				
14.	Whic	h of the	followi	ing state	ements re	lated to plan	t struc	ture are	e true ?					
	I) The	e cotyled	lons of	Mouri	<i>ria</i> have tı	ichosclereid	S							
	II) Yo	ung siev	ve elem	ents pos	ssess cyto	plasm witho	ut nucl	leus						
	II) Young sieve elements possess cytoplasm without nucleus III) Cells of pericycle in dicot root are capable of didifferentiation													
	IV) Cork lacks stomata but yet performs gaseous exchange													
	1) I, II				II, III		3) III			4) II, IV				
15.	Ident	ify the p	olant in	which	the tange	ential walls o	of collo	cytes a	re axces	sively thickened but rac	dial			
	walls	are thin	1)					
	1) <i>Mo</i>	nstera		2) (Cucurbita		3) <i>La</i>	ctuca		4) Eupatorium				
16.	Close	ly and c	ompac	tly arra	nged fun	damental tis	sue is r	net ioun	d in	•				
	1) Pro	thallus o	of <i>Pteris</i>	5		A	2) Me	edulla of	dicot st	em				
	3) Col	lumella o	of Fund	aria		• (4\\A\]	axial me	esophyll	of Nerium				
17.		the foll				1			1 3					
	<u>List –</u>		O				List – II							
		— eterophy	llous p	lant		7.0		— paragus	8					
	•	ant with	-			\	II) W							
	,	ant with			e leaves			agittario	\boldsymbol{a}					
		ant with					,	ribulus	-					
	2)11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Buccus					ctoria re	egia.					
	The c	orrect n	natch is	2			,,,,,	<i></i>	Sia					
	THE	A	B	C	D		A	В	C	D				
	1)	III	II	V	I	2)	III	IV	II	I				
	3)	I	V	III	II	4)	III	I	II	V				
18.		the foll			п	4)	Ш	1	п	V				
10.	List –		owing	11515.			<u>List -</u>	TT						
			anad la	nowa a										
		bbon sh					•	lotropis oratorb						
		iny leaf			olo			eratoph estamos						
		vollen ar		igy peti	oie		•	otamog						
	D) Di:	ssected l	ieaves				IV) V	allisneri	ıa					

V) Eichhornia

В

I

 Π

 \mathbf{C}

V

V

 \mathbf{D}

 \mathbf{II}

Ш

A

IV

IV

2)

4)

The correct match is

В

IV

I

 \mathbf{A}

III

V

1)

3)

 \mathbf{C}

I

II

 \mathbf{D}

Π

III

Eam			al (Botai		1110	iaviaj	<i>a.</i> • •	/111						
19.	-		lowing l	ists.										
	<u>List –</u>	<u>· I</u>					<u>List –</u>	<u>· II</u>						
	A) T. l	H. Mor	gan				I) Coi	ined the	e term (Genetics				
	B) G.	J. Meno	del				II) Linkage							
	C) Ba	teson					III) C	hecker	board					
	D) Re	ginald	C. Puni	nett			IV) L	aws of	Heredi	ty				
							V) M	utation	S					
	The c		natch is											
		A	В	C	D		A	В	C	D				
	1)	III	IV	I	II	2)	II	IV	I	III				
	3)	I	II	V	IV	4)	IV	III	II	I				
20.						widely used								
			-		emical mu	tagens caus	e gene	tic vari	ability	in a population and j	produce			
	•		e charac											
	1) Bot	h A and	R are tr	ue and	R explains	A 2)]	Both A	and R a	re true	and R does not explai	ns A			
	3) A is	true, R	is false			4) A	A is fals	e, R is t	rue					
21.	How	many z	ygospo	res are	formed in	a 100 – ce	lled fil	ament	of <i>Spir</i>	ogyra affinis if all o	cells are			
	involv	ved in c	onjugat	ion ?										
	1) 99			2)	50		3) 49			4) 1				
22.	Ident	ify the c	<i>correct</i> s	equenc	e of the sta	ges in the li	fe cycle	of Rhiz	z <i>opus</i> a	fter the reduction di	vision of			
	zygos	pore												
	1) Pro	myceliu	$am \rightarrow g$	erm spo	orangium –	→ germ spor	$es \rightarrow n$	nyceliui	m.					
	2) Promycelium → germ spores → germ sporangium → mycelium													
	3) My	celium	→ pron	nyceliu	m → germ	spores \rightarrow g	erm spo	orangiu	m					
	4) Pro	myceliu	$n \rightarrow n$	nyceliu	$m \rightarrow germ s$	sporangium	→ ger	n spore	S					
23.	Study the following lists.													
	<u>List – </u>	<u>I</u>					List-	<u>· II</u>						
	A) Ne	ck of a	rchegon	ium in	Funaria									
	B) Ne	ck of ar	chegon	ium in	Pteris		II) Tv	vo celle	d					
	C) Ne	ck cana	al cell in	Pteris			III) Z	ero						
	D) Ne	ck cana	al cells i	n <i>Cyca</i>	s	7.00	IV) S	ix verti	cal row	s of cells				
						X	V) Fo	ur vert	ical ro	ws of cells				
	The c	orrect 1	natch is	}	• 4									
		A	В	C	D		A	В	\mathbf{C}	D				
	1)	\mathbf{III}	IV	II	V	2)	IV	V	I	III				
	3)	\mathbf{III}	IV	II	I	4)	IV	III	V	I				
24.	False	statem	ent rela	ted to	Cycas is									
	1) M o	tile mal	e gamete	es and p	ollen tube a	are involved	in fertil	ization						
	2) End	losperm	formati	on occi	ars before fe	ertilization								
	3) Ov	ule cont	ains pol	len cha	mber									
	4) Gai	metophy	ytic tissu	e is not	t found in se	eeds								
25.	Study	the fol	lowing o	combin	ations and	identify co	<i>rect</i> m	atches.						
	_		_			neralizatio								
			_	_		- Biopestici								
			-			rophyte – (Engine	eering					
						site – Wate			Ü					
	1) I, II				II, III		3) I, I			4) II, IV				
26.			caused l	,	*	ng double st	, ,		ic acid	with ribose sugar as	genetic			
	mater			•		_								
	1) Tob	1) Tobacco mosaic disease							2) Cauliflower mosaic disease					
	3) Dahlia mosaic disease							4) Rice stunting disease						

_			
Famcat	201 N	Medical	(Rotanu)
Luncer-	2010	meatcat	DOLUNI

27.	Study the following table and identify the correct sequence of cells which shows the path of water
	movement between them

<u>Cell</u>	Osmotic Potential (MPa	<u>Pressure Potential (MPa)</u>
\mathbf{A}	-0.95	0.40
В	-0.75	0.40
C	-0.85	0.25
D	-0.65	0.25
1) $D \rightarrow B \rightarrow C \rightarrow A$	2) $B \rightarrow C \rightarrow D \rightarrow A$	3) $C \rightarrow B \rightarrow A \rightarrow D$ 4) $B \rightarrow D \rightarrow A \rightarrow C$

- The right sequence of carriers which involve in the transport of excess Na⁺ ions out of the cell in salt 28. resistant plants is
 - 1) Uniporter, Symporter 2) Symporter, Antiporter 3) Antiporter, Uniporter 4) Uniporter, Antiporter
- 29. Study the following.

List - IList - II

A) Sulphur I) Cytochrome – C – Oxidase

B) Molybdenum II) IAA synthesis

C) Copper III) Biotin

IV) Dinitrogenase D) Manganese

V) Oxygen evolving complex

The correct match is

	A	В	C	D		A	B C	D
1)	III	IV	II	I	2)	IV	B C III	II
3)	Ш	IV	I	V	4)	IV	I II	V

- **30.** The carbon ratio of lutein, abscisic acid and GA_{27} is
 - 1)6:3:42)5:3:4
- 3) 8:3
- 4)4:3:5
- Arrange the following respiratory substrates in decreasing order of CO₂ molecules released when 31. one molecule of each of them is oxidized

I) Tripalmitin 1) I, II, IV, III

II) Oleic acid 2) III, IV, II, I

III) Triolein 3) III, I, II, IV IV) Malic acid 4) III, II, IV, I

Assertion(A): The energy requirement for the formation of one hexose molecule is more in **32.** Chlorella than in Sugaryane.

Reason(R): The formation of physphoenol pyruvic acid from pyruvic acid requires two ATP molecules.

- 1) Both A and R are true and R explains A
- 2) Both A and R are true and R does not explains A

3) A is true, R is false

- 4) A is false, R is true
- 33. Eight molecules of an enzyme solution is mixed with 1000 molecules of the substrate in a reaction mixture. If it converts 80% of the substrate into product in five minutes, then its turnover number is

2) 15

3) 20

4) 60

34. Study the following lists.

> $\underline{List - I}$ <u>List – II</u> A) Oxidative decarboxylation I) Carbonic anhydrase B) Competitive inhibition II) Malic enzyme C) Metal ion as co-factor III) Pepsin

D) Organic molecule as co-factor

V) Succinic dehydrogenase

IV) Peroxidase

The correct match is

 \mathbf{C} В \mathbf{C} D A D B 1) IIΙ V IV V Π Ш Ι 2) 3) IV П IV

					in	diavidy	a.cc	om					
Eamo	cet-2010) Medic	al (Bota	ny)		<i>3</i>							
35.	Which	if the	followii	ng state	ements r	elated to prote	in syn	thesis a	re <i>true</i> ?				
	I) Trai	nscribe	ed <i>hn</i> –F	RNA an	d m-RN	A of gene are	simila	r in size	2				
	II) The	e 3' CC	CA end	of <i>t</i> –R!	NA acts a	as amino acid	bindin	g site					
	$III)f_{-1}$	met–t–	RNA b	inds on	to the 'I	P' site in riboso	ome						
	IV) Th	ne prot	ein fact	or call	ed RF ₃ h	elps in recogn	izing tl	he term	ination (codon			
	1) I, III	[2)	II, III		3) II,	IV		4) I, IV			
36.	If 'X' 1	molecu	les of A	TP are	utilized	to produce on	e mole	ecule of	glucose	during photosynthesis of a			
										hosphorylation during the			
										atio of 'X' and 'Y' is			
	1) 3:1	=		2)	5:2		3) 1:	1		4) 2:3			
37.	Study	the foll	lowing l	lists.									
	<u>List – </u>	I					<u>List -</u>	<u>- II</u>					
	A) Mass selection I) Co–10 rice variety												
	B) Pure line selection II) Kufri red potato variety												
	_		ous mut	tation			III) D)harwa	r Americ	an cotton variety			
	D) Clo	nal sel	ection						rice vari	· ·			
							V) G]	EB–24 ı	rice vari	ety			
	The co		natch is		_			_	_	_			
	4.	A	В	C	D	-	A	В	C	D			
	1)	III	I	V	П	2)	III	V	I	II			
20	3)	II	IV	Ш	V	4)	IV	I	пl				
38.		-				_	related	to reco	myinan	t DNA technology			
						d plasmid	1 · 1 DX	TA					
		-			•	ed double strand e action of DNA							
	,	•				on of antibiotic							
39.			l owing l		mincan	on or antibiotic	resista	m gene					
37.	List –		owing	11313.		• (<u> List -</u>	ш					
			s rich S	SCP			/	<u>- 11</u> inaliella	salina				
	B) Fox		is i icii k	JC1		. 0	,		nsuunu muscaria	•			
	,		ne defic	ient SC	'P	1/0	,		lipolytic				
	-				•	$O_{\lambda_{\lambda}}$			ella mell				
	D) Lysine rich SCP IV) Armillariella mellea V) Methylophilus methylotrophus												
	The co	rrect n	natch is	S			, , =,=	<i>y p</i> .					
		A	В	C	D		A	В	C	D			
	1)	III	IV	I	V	2)	III	\mathbf{II}	I	IV			
	3)	III	V	I	IV	4)	I	IV	П	III			
40.	From	the foll	owing,	identif	y DNA f	ragment show	ing pa	lindron	nic seque	ence.			

1)	4	2)	4	3)	1	4)	4	5)	3	6)	3	7)	3	8)	1	9)	4	10)	1
11)	2	12)	3	13)	2	14)	3	15)	4	16)	2	17)	1	18)	2	19)	2	20)	3
21)	2	22)	1	23)	2	24)	4	25)	3	26)	4	27)	4	28)	4	29)	3	30)	3
31)	3	32)	4	33)	3	34)	3	35)	2	36)	1	37)	1	38)	3	39)	1	40)	4

EAMCET-2010 MEDICAL-ZOOLOGY

41.	Statement (S): Populations of a species inhabiting different geographical areas are in a continuous proces												
	of ada	ptation	to their	surroun	ding enviror	nments an	d this lea	ads to the	e evolut	ion of	new species.		
	Reaso	n (R):	Geograp	ohical ba	rriers obstru	ıct interbr	eeding o	f populat	ions of	a spec	ies leading to repro	duc	
	tive is	solation	and evo	lution o	f new specie	es.							
	1) Bot	th (S) ar	nd (R) an	re not tr	ue		2) O	nly (S) is	true bu	ıt not (l	R)		
	3) Bot	th (S) ar	nd (R) as	re true b	out (R) does	not expla	in (S)						
	4) Bot	th (S) ar	nd (R) a	re true a	nd (R) is co	rrect expl	anation t	o (S)					
42.	Which of the following statements are correct with regard to Deuterostomes?												
	(a) Th	ne blasto	pore de	velops i	nto anus in	adult	(b) T	The blasto	opore d	evelops	into mouth in adu	lt	
	(c) Cl	eavage i	is radial	and ind	leterminate		(d) C	Cleavage	is spira	l and d	eterminate		
	1) (a)	and (c)		2)	(a) and (b)		3) (b) and (d)		4)	(b) and (c)		
43.	Choose the animal which exhibits the following characteristics:												
	(a) Ma	arine ha	bitat	(b)	Bilateral sy	mmetry v	vith ceph	nalizatic n					
	(c) Ha	aemocoe	l as pri	ncipak b	ody cavity	(d) E	Eyes [im]	lar to th	nat of v	ertebrates			
	1) Jell	ly fish		2)	Cuttle fish		3) S1	lver fish		4)	Dog fish		
44.	Which of the following is the correct swquence of cell cycle?												
	The correct answer is: $ 1) \ G_1 \to G_2 \to S \to M 2) \ S \to M \to G_2 \to G_1 3) \ G_1 \to S \to G_2 \to M 4) \ M \to G_2 \to G_2 \to M 4) \ M \to G_2 \to M \to M \to M \to M \to M \to M \to M$												
	1) G ₁	\rightarrow G_2 -	\rightarrow S \rightarrow 1	M 2)	$S \rightarrow M \rightarrow C$	${f G}_2 o {f G}_1$	G_1 3) $G_1 \rightarrow S \rightarrow G_2 \rightarrow M$ 4) $M \rightarrow S \rightarrow G_2 \rightarrow G_1$						
45.	Match the types of animal tissues given under List I with the parts/organs in which they occur, given												
	under	List II:											
	<u>List 1</u>	<u>[</u>					<u>List II</u>						
	(Tissu	ıe)					(Par	t/Organ))				
	(A) So	quamou	s epithe	lium			(I) W	Valls of n	ose				
	(B) H	yaline c	artilage				(II) I	Bowman'	s capsu	le			
	(C) A	dipose ti	issue				(III)	Iris					
	(D) S1	mooth n	nuscle				(IV)	(IV) Yellow bone marrow					
						(V) I	(V) Ear pinna						
	The C	Correct n	natch is:										
		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>			
	1)	V	I	IV	II	2)	V	IV	I	III			
	3)	II	I	IV	III	4)	II	IV	I	III			

Eamcet-2010 Medical (Zoology)

46.	The plane that divides the body into right and left halves:													
	(1) Tra	insverse		(2)	Frontal			(3) Sa	gittal		(4)	Radial		
47.	Match	the foll	owing:											
	List I							List I	I					
	(A) Re	eticulopo	odia					(I) Le	cithium					
	(B) Lo	bopodia	ı					(II) Collozoum						
	(C) Fil	lopodia						(III) C	Globiger	ina				
	(D) Ax	kopodia						(IV) Ceratium						
							(V) E	ntamoel	oa					
	The co	orrect ma	atch is:											
		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>			<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>			
	1)	III	IV	II	I	2)		III	V	I	II			
4.0	3)	IV	V	I	III	4)		II	III	Ι	IV			
48.			pronucle			grametes is					4) 1	T 1		
40	1) Syn	•	1 . 1		Neoplas		3) Iso	•			Iologamy			
49.	The process by which a new structure is formed in th) ′			on:	
5 0		perplasia		2)	Neoplas		3) Hy	pertropl	ıy	4) C	higantism			
50.		the foll	owing:	- 2		A	1		_					
	Parasi				ective S	•	V C	Discase Caused						
			m vivax		(I) 3rd stage larva				(a) Filariasis					
		enia sol			Cystic	AAO				rtain ma				
			a histoly			N.		(c) Amoebic dysentery						
			a bancro	ofti (IV	') Cy:\ti	corcus		(d) Ta	eniasis					
		orrect ma		D (77.1	<i>y</i>			.						
	(1)	A(III)		B(IV		C(II) (c)		D(I)						
	(2)	A(III)		B(IV		C(I) (c)		D(II)						
	(3)	A(IV		B(II)		C(I) (b)		D(III						
	(4)	A(III)		B(IV		C(I) (a)		D(II)						
51.	-		-	absent	betwee	en some of the	he se	gments	s. They	re:				
	The co	rrect an	swer is:											
	$1)\frac{1}{2},\frac{2}{3}$	$\frac{2}{3}, \frac{9}{10}, \frac{10}{11}$	<u>)</u> _	2)	$\frac{1}{2}, \frac{2}{3}, \frac{3}{4},$	9 10		$(3)\frac{4}{5},\frac{4}{1}$	$\frac{9}{10}, \frac{10}{11}, \frac{1}{11}$	1 <u>4</u> 15	4) $\frac{1}{2}$	$\frac{2}{3}, \frac{8}{9}, \frac{10}{11}$		
52.	_	retima, t	_		f nephri 2nd to t	dia are locat he last			segments		4) 7	th, 9th and	l 13th	

Eamcet-2010 Medical (Zoology)

Eam	cei-2010 Meaicai (20010g	<i>y)</i>		
53.	The cells, present in the	fat bodies of cockroach, wh	hich contain symbiotic bac	teria that synthesize amin
	acids are:			
	1) Trophocytes	2) Mycetocytes	3) Oenocytes	4) Urate cells
54.	In cockroach, the therm	oreceptor sensilla are preser	nt on:	
	1) Antenna, maxillary a	nd labial palps	2) Labrum, maxillary ar	nd labial palps
	3) First, second and thir	d trasomeres of tarsus	4) Anal cerci and pedice	el of antennae
55.	Statement (S): Biting a	and chewing mouth parts are	the most primitive type of	f mouth parts in insects.
	Reason (R): Holometa	bolus insects have biting and	d chewing type of mouth p	parts in their larvae.
	(1) Both (S) and (R) are	correct and (R) is he correct	et explanation of (S)	
	(2) Both (S) and (R) are	correct and (R) is not the co	orrect explanation of (S)	
	(3) (S) is correct but (R)	is wrong	(4) (S) is wrong but (R)	is correct.
56.	Which one of the follow	ving arthropods is viviparou	s?	
	1) Palaemon	2) Palamnaeus	3) Pediculus	4) Periplaneta
57.	Shannon's index (H) rep	presents:		
	1) The relation between	two randomly selected indiv	viduals of the same species	s in a habitat
	2) Relaive abundance o	f each species		
	3) The probability that t	wo randomly selected indivi-	iduals in he habitat belong	to the same species
	4) Number of genes of a	a specific trait that exist with	nin a population	
58.	The scientific name of H	Kashmiri stag is:		
	1) Sus salvanius		2) Grus 'eucogeranus	
	3) Cervus elephus hang	lu	4) Ailurus ochraceus	
59.	Select the animal from t	the examples given below w	hich exhibits neoeny in its	larval stage:
	1) Amphiuma	2) Typhlonectes	?) A nbystoma	4) Necturus
60.	Ductus Botalli connects	:		
	1) Two systemic arches	• 0	2) Pulmonary and syste	mic arches
	3) Systemic and carotid	arteries	4) Carotid and pulmona	ry arteries
61.	Which of he following	exhibit discentanous distrib	oution?	
	1) Ratitae and Osteichth	nyes	2) Metatheria and Carin	atae
	3) Dipnoi and Ratitage	7	4) Prototheria and Urod	ela
62.	The animal with epipub	ic bones and a chorioallonto	ic placenta is:	
	1) Opossum rat	2) Koala bear	3) Marsupial bandicoot	4) Opossum
63.	Arrage the correct seque	ence of enzymes which act of	on food in different regions	s of alimentary canal:
	(a) Pepsin	(b) Ptyalin	(c) Dipeptidase	(d) Carboxypeptidase
	The correct answer is:			
	1) (a) (b) (c) (d)	2) (b) (a) (d) (c)	3) (a) (d) (c) (b)	4) (b) (a) (c) (d)
64.	Number of oxygen mple	ecules bound in a saturated	haemoglobin molecule:	
	1) One	2) Two	3) Three	4) Four
65.	Mitral valve is:			
	1) Right atrio-ventricula	r valve	2) Left atrio-ventricular	valve
	3) Eustachian valve		4) Spiral valve	
66.	Which of the following	is an autoimmune disorder?		
	1) Hypothyroidism	2) Acromegaly	3) Gigantism	4) Grave's disease

Eamcet-2010 Medical (Zoology)

- 67. Which one of the following statements is not true with referene to the genes of eukaryotic animals?
 - 1) RNA polymerase allows the transcripotion of structural genes to synthesize a polycisdtronic m-RNA
 - 2) Many genes have stretches of nitrogen bases that code for amino acids and are called 'exons'
 - 3) Heterogenous nuclear RNA (hn RNA) is synthesized from split genes
 - 4) The bases that do not code for amino acids are called 'introns'
- 68. Match vertebral number and the corresponding region in rabbit:

 List II
 List II

 (A) Cervical
 (I) 16

 (B) Thoracic
 (II) 7

 (C) Caudal
 (III) 3 or 4

 (D) Sacral
 (IV) 12 or 13

The correct math is:

	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
1)	IV	III	II	I	2)	II	IV	I	III
3)	I	II	III	IV	4)	III	I	IV	II

- 69. Which event of the 'action potential' is indicated by the letter (A) in the diagram?
 - 1) Influx of K⁺
 2) Efflux of Na⁺
 3) Influx of Na⁺
 4) Efflux of K⁺

 100 mV

 100 mV

 100 mV
- 70. Identify the 'place of hydrolysis of ATP' and the 'power stroke' in muscle contraction, in the picture given below:

The correct answer is:

- 1) (A) and (D) 2) (B) and (C) 3) (C) and (D) 4) (A) and (B)
- 71. The inability to regulate the concentration of sodium ions in the blood could be due to the improper functioning of one of the following

Adenohypophysis: It produces ACTH
 Adrenal cortex: It produces epinephrine
 Adrenal medulla: It produces epinephrine
 Pars nervosa: It produces ADH

Eamcet-2010 Medical (Zoology)

72.	The Macrophages present in the liver are called									
	1) Microglial cells 2) Histiocytes	3) Lymphocytes 4) Kupffer cells								
73.	A mother with blood group 'B' type has a child with	blood group type 'O'. What is the possibility of the								
	genotypes of that mother and father ?									
	1) I ^A I ^A (father) and I ^B I ^O (mother)	2) IAIB (father) and IBIB (mother)								
	3) I^AI^O (father) and I^BI^O (mother)	4) I ^B I ^O (father) and I ^A I ^O (mother)								
74.	Drumstick Barr bodies are found in									
	1) All RBC of females	2) All RBC of males								
	3) Some neutrophils of females	4) Some neutrophils of males								
75.	Match the following in Drosophila with reference to sex determination									
	List I	List II								
	(Ratio of X Chromosomes to Autosomes) X/A	(Sex)								
	A) 0.5	1) Metafemale								
	B) 1.0	2) Metamale								
	C) 1.5	3) Male								
	D) 0.33	4) Intersex								
	E) 0.67	5) Female								
	$\underline{\mathbf{A}} \qquad \underline{\mathbf{B}} \qquad \underline{\mathbf{C}} \qquad \underline{\mathbf{D}} \qquad \underline{\mathbf{E}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	1) 3 1 2 4 5 3) 1 4 2 5 3	2) 3 5 1 2 4 4) 2 3 1 4 5								
76.	Statement (S): The concept of survival of the fittes, is central to natural selection									
	Reason (R): Individuals who possess advantageous characters to adapt to the environment have better									
	potential for survival									
	1) Only (S) is true but not (R)									
	2) Both (S) and (R) are true but (R) is not the correct explanation to (S)									
	3) Both (S) and (R) are true and (R) is the correct explanation to (S)									
	4) Both (S) and (R) are not true									
77.	Find the frequency of heterozygotes in a population	which exhibits the Hardy - Weinberg equilibrium, is								
	the frequencies of the two alleles in the population a	are 0.6 and 0.4								
	1) 0.80 2) 0.64	3) 0.48 4) 0.32								
78.	Haemopoietic stem cells are									
	1) Totipotent cells	2) Pleuripotent and multipotent cells								
	3) Unipotent cells	4) Differentiated cells								

Eamcet-2010 Medical (Zoology)

- The application of Polymerase Chain Reaction is: 79.
 - 1) to demonstrate DNA as genetic material
 - 2) to replicate specific DNA sequences at high temperatures
 - 3) to determine minerals in biological tissue
 - 4) to replicate RNA sequences at low temperatures
- 80. Match the following:

List I							List I	I			
(Com	mon Na	me)					(Scientific Name)				
I) Cat	fish						A) Clarias batrachus				
II) Mi	lk fish						B) Chanos chanos				
III) W	hite shr	imp					C) Heteropneustes fossilis				
IV) G	rey mul	let					D) Mugil cephalus				
							E) Per	naeus m	onodon		
							F) Per	F) Penaeus indicus			
The co	orrect m	atch is							0	·	
	Ī	<u>II</u>	<u>III</u>	<u>IV</u>			Ī	<u>II</u>	<u>M</u>	<u>IV</u>	
1)	A	C	E	D		2)	В		Е	A	
3)	A	В	F	D		4)	В	D	F	A	
						• (
						1					
					1.7	>					
					Q,						
				7							

41) 4	42) 1	43) 2	44) 3	45) 3	46) 3	47) 2	48) 2	49) 2	50) 1
51) 2	52) 3	53) 2	54) 3	55) 1	56) 2	57) 2	58) 3	59) 3	60) 2
61) 3	62) 3	63) 2	64) 4	65) 2	66) 4	67) 1	68) 2	69) 3	70) 2
71) 2	72) 4	73) 3	74) 3	75) 2	76) 3	77) 3	78) 2	79) 2	80) 3

81.

indiavidya.com

EAMCET-2010 MEDICAL-PHYSICS

A body weighs 22.42 gm and has a measured volume of 4.7 cc. The possible error in the measurement of

	mass and vo	lume are 0.0	1 gm and 0.	1 cc. Then the	max	imum erro	or percentage	in t	he density	will be
	1) 22%		2) 2.2%		3)	0.22%		4)	0.022%	
82.	A man move	es 20 m Nort	th, then 10 n	n east and then	10	$\frac{1}{2}$ m South	-West, his d	ispla	acement is	
	1) 20 m No	rth	2) $10\sqrt{2}$	m North-West	3)	$10\sqrt{2} \text{ m}$	South-East	4)	10 m No	rth
83.	An electron i	moving at a s	speed of 5 x	10 ⁶ ms ⁻¹ is shot	thro	ugh a shee	et of paper w	hich	is 2.1 x 1	0 ⁻⁴ cm thick
	The electron	emerges from	n the paper	with speed of 2	x 10	6 ms ⁻¹ . T	he time taken	by	the electro	on in seconds
	to pass throu	igh the paper	sheet is							
	1) 5 x 10 ⁻¹²	2	2) 6 x 10	-13	3)	3×10^{-12}	2	4)	5 x 10 ⁻¹³	
84.	Match conse	rvation laws	in List-I wi	th the processes	in I	List–II.				
	$\underline{List - I}$				Lis	st – II				
	A) Linear n	nomentum			I)	Elastic co	ollision			
	B) Angular	momentum			II)	Inelastic	collision			
	C) Kinetic of	energy			III) No exter	rnal force			
	D) Total en	ergy			IV) No exte	rnal torque			
					V)	All phys	ical processe	S		
	The correct	match is				1.D.				
	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>		7	<u>B</u>	<u>C</u>		<u>D</u>
	1) III	IV	I	V	2)	IV	III	I		V
	3) V	IV	II	I	4)	V	III	IV	7	I
85.	The kinetic	energy K of	a particle of	of mass 'm mov	ing	along a ci	ircle of radiu	ıs 'F	R' depends	on distance
	covered 'S' a	s $K = AS^2$.	Then the acc	celeration of par	ticle	is given b	y			
	1) $\frac{2AS}{m}\left(1+\frac{1}{m}\right)$	$-\frac{S^2}{R^2}\bigg]^{1/2}$	$2) \frac{2AS}{m} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\left[-\frac{S^2}{R^2}\right]^{1/2}$	3)	$\frac{2AS^2}{mR}$		4)	$\frac{2AS}{m}$	
0.6	A1)	4	-41				TE Latin
86.	-		_	stant velocity hi ratio of velociti						
	1		1_e		3-	e	1		e ± 1	
	1) $\frac{1}{e}$		2) $\frac{1}{1+e}$		3)	$\frac{c}{1+e}$		4)	$\frac{c+1}{e}$	

88. A car is travelling along a curved road of radius r. If the coefficient of friction between the tyres and the road is μ , the car will skid if its speed exceeds

instant when the velocity of A is V and that of B is 2V, velocity of centre of mass of the syste is

Two particles A and B initially at rest move towards each other under a mutual force of attraction. At the

1)
$$2\sqrt{\mu rg}$$

1) Zero

87.

2)
$$\sqrt{3\mu rg}$$

2) V

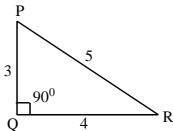
3)
$$\sqrt{2\mu rg}$$

3) 2V

4)
$$\sqrt{\mu rg}$$

4) 3V

Eamcet-2010 Medical (Physics)


PQR is a right angled triangular plate of uniform thickness as shown in the figure. If I₁, I₂ and I₃ are moments of inertia about PQ, QR and PR axes respectively, then

3)
$$I_2 > I_1 > I_3$$

4)
$$I_3 > I_1 > I_2$$

The radius of gyration of a solid sphere of radius R about a certain axis is also equal to R. If r is the distance 90. between the axis and the centre of the sphere, then r is equal to

3)
$$\sqrt{0.6}$$
 R

The period of revolution of Jupiter around the sun is 12 times the period of revolution of the earth around 91. the sun. The distance between the Jupiter and sun is n times the distance between the earth and sun. Then the value n is

1)
$$(144)^{3/2}$$

$$(144)^{2/3}$$

3)
$$\sqrt[3]{144}$$

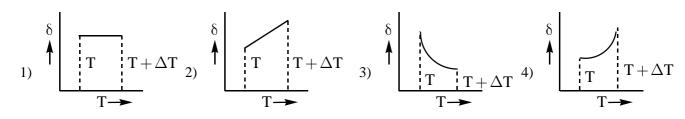
4)
$$\sqrt[4]{144}$$

A mass M is suspended from a light spring. An additional mass m is added, displaces the spring further by 92. a distance 'x'. Now the combined mass will oscillate with a period.

$$_{1)} \quad T=2\pi \sqrt{\frac{mg}{x\left(M+m\right)}} \quad _{2)} \quad T=2\pi \sqrt{\frac{(M+m)x}{mg}} \qquad _{3)} \quad T=\frac{2\pi \sqrt{\frac{n \cdot g}{n \cdot g}}}{3\sqrt{(M+m)x}} \quad _{4)} \quad T=2\pi \sqrt{\frac{(M+m)}{mgx}}$$

A 4.0 m long copper wire of cross-sectional area 1.2 cm² is stretched by a force of 4.8 x 10³N. If Young's modulus for copper is $Y = 1.2 \times 10^{11} \text{ N/m}^2$, the increase in leight of wire and strain energy stored per unit volume are

A spherical liquid drop of diameter D b. eaks up to n identical spherical drops. If the surface tension of the 94. liquid is ' σ ', the change in energy in this process is


1)
$$\pi \sigma D^2 (n^{1/3} - 1)$$

2)
$$\pi \sigma L^2 (n^{2/3} - 1)$$

3)
$$\pi \sigma D^2 (n-1)$$

$$1) \ \pi\sigma D^2\left(n^{1/3}-1\right) \qquad 2) \ \pi\sigma D^2\left(n^{2/3}-1\right) \qquad 3) \ \pi\sigma D^2\left(n-1\right) \qquad 4) \ \pi\sigma D^2\left(n^{4/3}-1\right)$$

- A tank of height 5 m is full of water. There is a hole of cross-sectional area 1 cm² in its bottom. The volume 95. of water that will come out from this hole per second is $(g = 10 \text{ m/s}^2)$
 - 1) 10^{-3} m³/s
- 2) 10^{-4} m³/s
- 3) $10 \text{ m}^3/\text{s}$
- 4) 10^{-2} m³/s
- An ideal gas is initially at temperature T and volume V. Its volume is increased by ΔV due to an increase 96. in temperature ΔT , pressure remaining constant. The physical quantity $\delta = \frac{\Delta V}{V \Delta T}$ varies with temperature as

where $V_1 > V_2$ where $V_1 > V_2$. If P is plotted on y-axis and T on x-axis, then

1) The curve for V_1 has greater slope than that for V_2 2) The curve for V_2 has greater slope than that for V_1

4) The curves intersect at some point other than T = 0

The pressure P for a gas is plotted against its absolute temperature T for two different volumes \boldsymbol{V}_1 and \boldsymbol{V}_2

Eamcet-2010 Medical (Physics)

3) Both curves have same slope

97.

98.	One mole of an ideal g	as $(\gamma = 1.4)$ is adiabatically	compressed so that its ter	mperature rises from 27°C to
	35°C. The change in the	ne internal energy of the gas	is $(R = 8.3 \text{ J.mol}^{-1} \text{ K}^{-1})$	
	1) - 266 J	2) 166 J	3) - 268 J	4) 168 J
99.	A lead bullet of unknow	n mass is fired with a speed	of 180 ms ⁻¹ into a tree in v	which it stops. Assuming that
	in this process two third	l of heat produced goes into	the bullet and one third in	to wood. The temperature of
	the bullet raises (Specific	ic heat of lead = 0.120 Jg^{-1}	${}^{0}C^{-1}$)	
	1)	2)	3) 90° C	4) 100^{0} C
100.	A cylinder of radius 'R	d' made of material of coeff	icient of thermal conduct	ivity 'k ₁ ' is surrounded by a
	cylindrical shell of inr	ner radius 'R' and outer rad	ius 2R made of a materi	al of coefficient of thermal
	conductivity 'k2'. The	two ends of the combined	system are maintained at	two different temperatures.
	There is no loss of heat	t across the cylindrical surface	ce and the system is in th	e steady state. The effective
	coefficient of thermal co	onductivity of the system is		
	1) 1- + 1-	2) $\frac{k_1 + 3k_2}{4}$	$3k_1 + k_2$	$\frac{\mathbf{k}_1 \mathbf{k}_2}{\mathbf{k}_1 \mathbf{k}_2}$
	1) $k_1 + k_2$	4	3) 4	$k_1 + k_2$
101.	A source of sound prod	ducing wavelength of 50 cm	is no ving away from st	ationary observer with 1/5th
	speed of sound. Then,	what is the wavelength of s		
	1) 70 cm		3) 40 cm	4) 60 cm
102.				produced in 3 sec when two
		imultaneously. If one of the	waves has 2m wavelength	, the wavelength of the other
	wave is			
100	1) 1.98 m	2) 2.04 m	3) 2.00 m	4) 1.99 m
103.				The critical angle for the two
		mum possible of deviation of	t the ray is	
	1) $\frac{\pi}{2}$ – C	2) $\pi - 2C$	3) 2C	4) $\frac{\pi}{2} + C$
104	2	iced by an astronomical teles	scope for normal adjustmen	nt is 10 and the length of the
104.	-	e magnification, when the im	_	_
	1) 6	2) 14	3) 16	4) 18
105.	•	,	·	with another prism made up
		dex 1.75 to produce dispersi		
	1) 70	2) 90	3) 40	4) 50
106.		m and minimum intensities	of an interference pattern	n is 36 : 1, then the ratio of
		nterfering waves will be	•	
	1) 3:7	2) 7:4	3) 4:7	4) 7:5
				Page No.3
				1 ugc110.0

Eamcet-2010 Medical (Physics)

107.	A short magnet oscillating in vibration magnetometer with a frequency 10 Hz. A downward current of
	15 A is established in a long vertical wire placed 20 cm to the West of the magnet. The new frequency of the
	short magnet is (The horizontal component of earth's magnetic field is 12 µT)

108. A short bar magnet is arranged with it North pole pointing geographical North. It is found that the horizontal component of Earth's magnetic induction (B_H) is balanced by the magnetic induction of the magnet at a point which is at a distance of 20 cm from its center. The magnetic moment of the magnet is (if $B_H = 4 \times 10^{-5} \text{ Wb m}^{-2}$)

1)
$$3.2 \text{ A}-\text{m}^2$$

3)
$$6.4 \text{ A}-\text{m}^2$$

4)
$$0.8 \text{ A}\text{-m}^2$$

109. The plates in a parallel plate capacitor are separated by a distance 'd' with air as the medium between the plates. In order to increase the capacity by 66%, a dielectric slab of dielectric constant '5' is introduced between the plates. What is the thickness of the dielectric slab?

1)
$$\frac{d}{4}$$

$$2) \frac{d}{2}$$

3)
$$\frac{5d}{8}$$

110. Four charges of magnitude '- Q' are placed at the four corners of a square an a change 'q' is at its centre. If the system is in equilibrium the value of is

1)
$$-\frac{Q}{4}(1+2\sqrt{2})$$

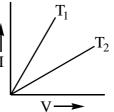
2)
$$\frac{Q}{4}(1+2\sqrt{2})$$

1)
$$-\frac{Q}{4}(1+2\sqrt{2})$$
 2) $\frac{Q}{4}(1+2\sqrt{2})$ 3) $-\frac{Q}{2}(1+2\sqrt{2})$ 4) $\frac{Q}{2}(1+2\sqrt{2})$

4)
$$\frac{Q}{2}(1+2\sqrt{2})$$

111. A battery of e.m.f 2.1 V and internal resistance 0.005Ω is shorted for 5 second by a wire of constant resistance 0.02Ω , mass 1 g and specific heat $0.1 \text{ cal/g}^0/\text{C}$. The rise in the temperature of the wire is

2)
$$21.4^{\circ}$$
C


112. The current-voltage graph for a given metallic wire at two different temperatures T₁ and T₂ is shown in the figure. The temperatures T_1 and T_2 are related as

1)
$$T_1 > T_2$$

$$2) \ \ \, T_{1} < T_{2}$$

3)
$$T_1 = T_2$$

4)
$$T_1 = 2T_2$$

113. For a thermocouple the temperature of cold junction (T_C) , neutral temperature (T_n) and temperature of inversion (T_i) are 0°C, 285°C and 585°C respectively. If the temperature of cold junction is raised to 10°C, then

1)
$$T_n = 275^0 C$$
 and $T_i = 570^0 C$

2)
$$T_n = 275^0 C$$
 and $T_i = 560^0 C$

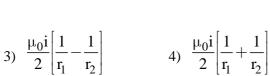
3)
$$T_n = 285^0 C$$
 and $T_i = 560^0 C$

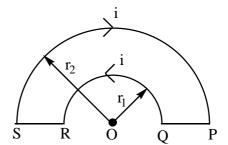
4)
$$T_n = 295^0 C$$
 and $T_i = 580^0 C$

114. A wire of length 6.28 m is bent into a circular coil of 2 turns. If a current of 0.5A exists in the coil, the magnetic moment of the coil is, in A-m²

1)
$$\frac{\pi}{4}$$

2)
$$\frac{1}{4}$$


115. A metal rod of length 2m is rotating with an angular velocity of 100 radians/sec in a plane perpendicular to a uniform magnetic field of 0.3 T. The potential difference between the ends of rod is

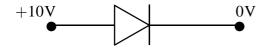

Eamcet-2010 Medical (Physics)

116. A wire loop PQRSP is constructed by joining two semi-conductor coils of radii 'r₁' and 'r₂' respectively as shown in the figure. If the current flowing in the loop is 'i', then the magnetic induction at the point 'O' is

2)
$$\frac{\mu_0 i}{4} \left[\frac{1}{r_1} + \frac{1}{r_2} \right]$$

117. The threshold frequency of the metal of the cathode in a photoelectric cell is 1×10^{15} Hz. When a certain beam of light is incident on the cathode, it is found that a stopping potential '4.144 V' is required to reduce the current to zero. The frequency of the incident radiation is $(h = 6.63 \times 10^{-34} \text{ J-s})$

- 1) 2.5 x 10¹⁵ Hz
- 2) $2 \times 10^{15} \text{ Hz}$
- 3) $4.144 \times 10^{15} \text{ Hz}$
- 4) $3 \times 10^{16} \text{ Hz}$


118. The surface of a metal has work function 2.66 eV. This is illuminated with photons of wavelength 450 nm. The de Broglie wavelength of the emitted photoelectrons is (Mass of electron = 9×10^{-31} kg)

- 1) 2.045 x 10⁻⁹ m
- 2) 4.09 x 10⁻⁹ m
- 3) 8.18 x 10⁻⁹ m

119. If 200 MeV of energy is released in the fission of 1 nucleus of ₉₂U²³⁵, the number of nuclei that undergo fission to produce energy of 10 kwh in one second.

- 1) 11.25 x 10¹⁸
- 2) 22.5×10^{17}
- 3) 11.25 x 10
- 4) 22.5×10^{18}

120. In the figures shown below.

- 1) In both fig. (a) and fig. (b) the diodes are forward piased
- 2) In both fig. (a) and fig. (b) the diodes are reverse biased
- 3) In fig. (a) the diode is forward biased and in fig. (b), the diode is reverse biased
- 4) In fig. (a) the diode is reverse biase 1 and in fig. (b), it is forward biased

81) 2	82) 4	83) 2	84) 1	85) 1	86) 2	87) 1	88) 4	89) 1	90) 3
91) 3	92) 2	93) 3	94) 1	95) 1	96) 3	97) 2	98) 2	99) 3	100) 2
101) 4	102) 2	103) 2	104) 2	105) 3	106) 4	107) 4	108) 1	109) 2	110) 2
111) 4	112) 2	113) 3	114) 1	115) 3	116) 1	117) 2	118) 2	119) 3	120) 3

EAMCET-2010 MEDICAL-CHEMISTRY

121.	The radial probability dis-	tribution curve obtained for	an orbital wave function $(\psi$) has 3 peaks and 2 radial
	nodes. The valence electro	n of which one of the followi	ng metals does this wave fu	unction (ψ) correspond to ?
	1) Cu	2) Li	3) K	4) Na
122.	In a hydrogen atom, the ethe electron is	lectron is at a distance of of	4.768 A from the nucleus.	The angular momentum of
	$1) \ \frac{3h}{2\pi}$	$2) \frac{h}{2\pi}$	3) $\frac{h}{\pi}$	4) $\frac{2h}{\pi}$
123.	The incorrect order of se	cond ionization energies in t	the following is	
	1) $Rb > K$	2) Na > Mg	3) $Cr > Mn$	4) S > P
124.	The correct order of mag	nitude of bond angles amon	g the compounds CH ₄ , NI	H ₃ and H ₂ O is
	1) $CH_4 < H_2O < NH_3$	2) $H_2O < NH_3 < CH_4$	3) $NH_3 < CH_4 < H_2O$	4) $NH_3 < H_2O < CH_4$
125.	Molecular orbital theory	was proposed by		
	1) Lewis	2) Muliken	3) Slater	4) Pauling
126.	0.14 g of an element on o	combustion gives 0.28 g of i	ts oxide. What is that elem	nent?
	1) Nitrogen	2) Carbon	3) Fluoring	4) Sulphur
127.	Equal weights of methan	e and oxygen are mixed in	an empty container at 25%	C. The fraction of the total
	pressure exerted by oxyg	en is		
	1) $\frac{1}{2}$	2) $\frac{2}{3}$	3) $\frac{1}{4}$	4) $\frac{1}{3}$
128.	Which one of the following	ng 1.0×10^{-3} mola aqueou	s solutions has the highest	t boiling point ?
	1) Aluminium (III) chlori	de	2) Lead (II) nitrate	
	3) Sodium chloride		4) Magnesium nitrate	
129.	What is the volume of 0.1	M H ₂ SO ₄ required in litres t	o neutralize completely 1 l	itre of a solution containing
	20 g of NaOH?			
	1) 5.0	2) 0.5	3) 2.5	4) 10.0
130.	If the solution of copper	sulphate in which a coppe	r rod is immersed, is dilu	ted 100 times, what is the
	change in electrode poter	ntial (Reduction) ?		
	1) Increases by 29.5 mV	2) Decreases by 29.5 mV	3) Increases by 59.0 mV	4) Decreases by 59.0 mV
131.	What is the e.m.f. of the	cell for the reaction Fe^{2+} +	$Zn \rightarrow Zn^{2+} + Fe$? Given	that
	$_{\rm E}E^0_{\rm Zn Zn^{2+}(1.0M) }=0.76V$	$V_{\text{and}} E^{0}_{ \text{Fe}^{2+}(1.0\text{M}) } = 0.41\text{V}$,	
	1) 1.17 V	2) 0.35 V	3) -1.17 V	4) -0.35 V
132.	A crystalline solid substan	nce has a density of 10 g/cm	and the length of the edge	ge of the unit cell (FCC) is
	20 A. How many number	r of atoms are present in 20	0 grams of the solid ?	
	1) 2×10^{23}	$^{2)} 1 \times 10^{26}$	3) 1×10^{25}	4) 5×10^{27}

Eamcet-2010 Medical (Chemistry)

1) Co,CO₂

2) CO₂, CO

	For the		•	•	∵ D whi	ch one of the	he follos	wing is	not corr	ect?	
133.						formation of		wing is	not con	cct.	
	2) Rate	of form	nation (of $C = \frac{1}{2}$	$\frac{2}{3}$ × Rate of	disappearan	ice of B				
	3) Rate	of form	nation	of $D = \frac{1}{2}$	$\frac{1}{3}$ × Rate of	disappearan	ice of B				
	4) Rate	of disa	ppearai	nce of A	$= 2 \times Rate$	of formation	on of C				
134.	What is	s the eff	fect of	a ten-fol	d increase i	n pressure o	on K _p in	the reac	ction N	$(2)(g) + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$	at
	equilib										
	1) A te	n-fold i	ncrease	2).	A ten-fold	decrease	3) No	change	e	4) Equal to K _C	
135.	<u>Asserti</u>	ion (A)	:Accor	ding to l	Lowry-Bron	sted theory,	a subta	ince can	functio	on as an acid as well as a ba	ıse
	Reason	(R):	Acid rea	acts with	a base to j	produce a sa	ılt.				
	The co	rrect an	swer is								
	1) Both	A and	R are t	rue and	R explains	A					
	2) Both	A and	R are t	rue and	R does no	t explains A	١				
	3) A is	true, R	is false)		4)	A is fals	se, R is	true		
136.	Heat of	f format	ion of	CO and	CO, are -9	4.0 kcal/mo	le respe	ctively.	What is	the heat of combustion of	CO
	in kcals				2						
	1) +26	.4		2)1	20.6		3)-67	7.6		4) 135.2	
137.	What is	s the em	nulsifier	in milk	?		46	7.			
	1) Albu	umin		2)	Soap	A	3) Ce	latin		4) Caesin	
138.	Which	of the f	followir	ng staten	nents is inco	orrect ?	Q 3				
	1) H ₂ O	has v	veak ac	idic proj	perty		2) H ₂	O ₂ has	weak ba	sic property	
	3) H ₂ O	can ac	ct as ox	aidising a	agent	7.0	4) H ₂	O ₂ can a	act as a	reducing agent	
139.	Match	the follo	owing								
	<u>List - I</u>	:			• 1		<u>List -</u>	<u>II</u>			
	A) Dol	omite					I) Ca	CO_3			
	B) Fluo	orapatite	2				II) 2BeO. SiO ₂				
	C) Phe	nacite					III) SrSO ₄				
	D) Cel	estite					IV) C	CaCO ₃ . N	$MgCO_3$		
							V) 30	$Ca_3(PO_4)$	₂ .CaF ₂		
	The co	rrect an	swer is								
		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	
	1)	IV	V	III	II	2)	V	IV	II	III	
	3)	IV	V	I	II	4)	IV	V	II	III	
140.				comes pa							
		e. HNO	3		dil.H ₂ SO ₄			ry dil. H	-	4) conc. H ₂ SO ₄	
141.			e comp	ounds of	f carbon. A	on passing	over red	l hot col	ke is con	nverted to B. Then A and B	are
	respect	ively									

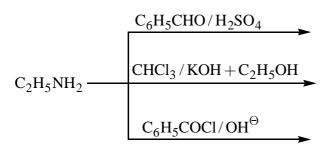
3) CH₄, C₂H₆

4) CCI₄, CHCl₃

Eamcet-2010 Medical (Chemistry)

3) $Ch_3 - CH = CH - CHO$

142.	In P_4O_{10} , the numberr of	oxygen atoms bonded to ea	ch phosphorus atom is	
	1) 3	2) 4	3) 5	4) 6
143.	The oxidation number of	sulphur in S ₈ , SO ₂ and H ₂ S	, respectively are	
	1) 0, +6, -2	2)0, +4, -2	3) 0, +1, +2	4) 0, +1, -2
144.	The order of bond energi	es in halogen molecules is		
	1) $F_2 < Cl_2 < Br_2 < I_2$	2) $F_2 > Cl_2 Br_2 > I_2$	3) $Cl_2 > Br_2 > F_2 > I_2$	4) $Cl_2 > F_2 > Br_2 > I_2$
145.	The shape of XeF ₆ is			
	1) Pentagonal bipyramida	al	2) Square planar	
	3) Octahedral		4) Distrorted octahedral	
146.	One mole of CoCl ₃ . YNH	complex compound on con	mplete ionisation in water p	produces thre moles of ions.
	If one chloride satisties b	ooth primary and secondary	velencies of cobalt ion, the	e value of Y is
	1) 3	2) 4	3) 5	4) 6
147.	The process used in the i	refining of aluminium and zi	inc metals are repsectively	
	1) Hoop's process and fr	actional distillation	2) Hoop's process and c	upellation
	3) Poling and fractional of	distillation	4)Cupellation and fraction	onal distillation
148.	Ozone layer is present in			
	1) Troposphere	2) Stratosphere	3) Mesosphere	4) Thermaosphere
149.	The IUPAC name of			
	1) 4-ethyl decane	2) 3-propyl nonane	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
			10	
	3) 3-hexyl hexane	4) 4-hexyl hexane		
150.	The product obtained wh	en propene undergoes addivi	ion reaction with HBr in t	hepresence of benzoyl per-
	oxide is			
	1) 1-bromopropane	2) 2-bromopic pane	3) 1, 2-dibromopropane	4) 2, 2-dibromopropane
151.	Which one of the following	ng compound is formed whe	n nitrobenzene is treated w	with bromine in the presence
	of ferric ion ?			
	1) m-bromonitrobenzene	,	2) o-bromonitrobenzene	
	3) p-bromonitrobenzene		4) mixture of o-bromon	itrobenzenes
152.	Which one of the following	ing not having two chiralcen	itres ?	
	$H_3C - CH(Br) - CH(OH)$	- CH ₃	2) $H_3C - (CH(NH_2) - CI$	$H(Br) - CH_3$
	3) $H_3C - CH(NH_2) - CH(NH_3)$	$(Cl) - CH_3$	4) $H_3C - CH(NH_2) - CH_2$	₂ – CH ₃
153.	Chloroform when heated	with silver powder gives		
	1) CH ₄	$2) H_3C - CH_3$	3) CH = CH	4) CH2 = CH2
154.	Which one of the following	ing compounds in steam dist	tillable ?	
	1) p-nitrophenol	2) o-bromophenol	3) o-cresol	4) o-nitrophenol
155.	Which one of the followi	ng is one of the cross end p	roducts formed when a mi	xture of acetone and acetal-
	dehyde is heated after tre	eating with aqueous sodium	hydroxide ?	
	1) $s(CH_3)_2 C = CH - C$	Н	2) $(Ch_3)C = CHCOCH$	I_3


4) $(CH_3)_2 CH(OH)CH_2CO-CH_3$

Eamcet-2010 Medical (Chemistry)

156. What are A, B and C in the following reactions?

1) CH ₃ CO ₂ Na-	$\xrightarrow{\operatorname{Sodalime}/\Delta}$ A, CH ₃ CO	$_{2}H \xrightarrow{\text{LiAlH}_{4}} B$, $\text{CH}_{3}\text{CO}_{2}\text{Na}$	$\xrightarrow{\text{Kolbe's electrolysis}} C$
$\underline{\mathbf{A}}$	<u>B</u>	<u>C</u>	
1) C_2H_6	C,H,OH	$\mathrm{CH}_{_{4}}$	
2) CH ₄	C,H,OH	$C_{2}H_{6}$	
3) $C_{2}H_{6}$	CH,COCH,	$C_3^2H_8^{\circ}$	
4) $(\tilde{CH}_{3}CO)_{2}O$	C_2H_6	C_2H_6	

157. A, B and C in the following reactions?

1)
$$C_2H_5CH_2 - NHC_6H_5$$
 C_6H_5NC $C_6H_5N(COC_6H_5)_2$

2)
$$C_2H_5 - N = CH - C_6H_5$$
 C_2H_5NC $C_6H_5 - NH - CO - + C_6H_5$
3) $C_6H_5 - N = CH - C_6H_5$ C_6H_5CN $C_4H_5CO - C_6H_5NH_2$

OH
$$C_6H_5 - CH - NH - C_6H_5$$
 $C_6H_5 - NC$
OH
 $C_6H_5 - C = N - C_6H_5$

- 158. 1, 3-Butadiene and styrene on polymerisation give
 - 1) Bakelite 2) Terylene
- 3)Buna-S 4) Teflon
- 159. Choose the correct statement from the following
 - 1) All amino acids have comon isoelectric point
 - 2) All naturally occurring α amino acids optically acitive except glycine
 - 3) At pH = 0 all amino acids are present at their anions
 - 4) In strongly basic solutions, all amino arias are present as their cations
- 160. Aspirin is acetyl salicylic acid; the pair of functional groups present in the compound is
 - 1) Hydroxyl, ester

2) Carboxylic acid, hydroxyl

3) Carboxylic acid, keto

4) Carboxylic acid, ester

121) 4	122) 1	123) 1	124) 1	125) 2	126) 4	127) 4	128) 1	129) 3	130) 4
131) 2	132) 3	133) 4	134) 3	135) 2	136) 3	137) 4	138) 2	139) 4	140) 1
141) 2	142) 2	143) 2	144) 3	145) 4	146) 3	147) 1	148) 2	149) 1	150) 1
151) 1	152) 4	153) 3	154) 4	155) 1	156) 2	157) 2	158) 3	159) 2	160) 4