Date :

EAMCET-2010 ENGINEERING-CHEMISTRY

121.	A solution of concentrat	ion 'C' g equiv/litre has a sp	pecific resistance R. The ed	quivalent conductance of the
	solution is "			•
	1) R/C	2) C/R	3) $\frac{1000}{RC}$	4) $\frac{1000R}{C}$
122.	Assertion (A) : White tin	n is an example of tetragona	l system	
	Reason (R) : For a tetrag	gonal system $a = b$ and c and	d $\alpha = \beta \alpha = \beta = \gamma \neq 90^{\circ}$.	
	The correct answer is :			
	1) Both A and R are true	e and R explains A		
	2) Both A and R are true	e and R does not explains A		
	3) A is true, R is false		4) A is false, R is true	
123.	What is the slope of the	straight line for the graph d	rawn between ln k and $\frac{1}{T}$,	where k is the rate constant
	of a reaction at tempera	ture T?		
	1) $\frac{-E_a}{2.303R}$	2) $\frac{-E_a}{R}$	3) $\frac{E_a}{R}$	4) $\frac{R}{E_a}$
124.	If the equilibrium consta	int for the reaction	e e e e e e e e e e e e e e e e e e e	
	$H_{2(g)} + I_{2(g)} \Longrightarrow 2H$		10.	
	what is the equailibrium	constant of	5 7	
	$H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$?		
	1) $\frac{1}{K}$	constant of ? 2) \sqrt{K} on of acetic acid is 5.0. Wh	3) K	4) $\frac{1}{\sqrt{K}}$
125.	The pH of 0.01 M solution	on of acetic acid is 5.0. Wh	at are the values of [H ⁺] a	nd K _a respectively?
	1) 1 x 10 ⁻⁵ M, 1 x 10 ⁻⁸	2) 1 x 10 ⁻⁵ M, 1 x 10 ⁻⁹	4) 1 x 10 ⁻⁴ M, 1 x 10 ⁻⁸	4) 1 x 10 ⁻³ M, 1 x 10 ⁻⁸
126.	A system is provided w	ith 50 Joules of heat and th	ne work done on the syste	m is 10 Joules. What is the
	change in internal energ	y of the system in Joules?		
	1) 60	2) 40	3) 50	4) 10
127.	A micelle formed during	the cleansing action by so	ap is	
	1) A discrete particle of	soap	2) Aggregated particles	of soap and dirt
	3) A discrete particle of		4) An aggregated partic	
128.		npound of formed when H_2	D_2 is added to TiO ₂ solution	n acidified with conc. H_2SO_4
	is			
	1) Ti_2O_3	2) $H_2 Ti_2 O_8$	3) $H_2 TiO_3$	4) $H_2 TiO_4$
129.	•		2 N ₂ CO	
120	1) $K_2 CO_3$	2) KHCO ₃	3) Na_2CO_3	4) CaCl ₂
130.			uons to give a variety of	products. Which one among
	the following is not form 1) B_2H_6 . 2 NH_3	2) $B_{12} H_{12}$	3) B ₃ N ₃ H ₆	4) $(BN)_n$ Page No. 1
				Page No.1

	indiavid	lva.com	
Eamo	cet-2010 Engineering (Chemistry)	Date :	
131.	Which one of the following is the mineral for tin?		
	1) galena2) cerussite	3) cassiterite4) anglesite	
132.	The oxide of nitrogen formed by thermal decompo	osition of NH ₄ NO ₃ is	
	1) NO 2) N ₂ O	3) N_2O_5 4) NO_2	
133.	Which one of the following is most acidic?		
	1) H_2O 2) H_2S	3) H_2 Te 4) H_2 Se	
134.	Which one of the following is formed apart from	sodium chloride when chlorine reacts with hot cor	icen-
	trated sodium hydroxide?		
	1) NaOCl 2) NaClO ₃	3) NaCIO ₂ 4) NaCIO ₄	
135.	Helium mixed with oxygen is used in the treatment	nt of	
	1) Beri beri 2) Burning feet	3) Joints burning 4) Asthma	
136.	Which of the following is a correct statement ?		
	1) Aqueous solutions of Cu^{+} and Zn^{2+} are colourless	s 2) Aqueous solutions of Cu^{2+} and Zn^{2+} are colour	r less
	3) Aqueous solutions of Fe^{3+} is green in colour	4) Aqueous solutions of MNO_4^- is colourless	
137.	The chemical reaction that involves roasting proce	ess is	
	1) $\text{Fe}_2\text{O}_3 \rightarrow 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2$	2) $2\text{Al} + \text{Fe}_2\text{O}_3 \rightarrow 2\text{Fe} + \text{Al}_2\text{O}_3$	
	3) $2ZnS + 3O_2 \rightarrow 2Zno + 3SO_2$	4) $\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$	
138.	The acceptable level of carbon monoxide gas (CO)) in the atmosphere in ppm level in	
	1) 9 2) 250	3) 49 4) 850	
139.	The conversion of O-acylated phenol in presence of	f AlCl to C - acylated phenol is an example for this	type
	of organic reaction	240	
	1) Addition reaction	2) Substitution reaction	
	3) Molecular rearrangement	4) Elimination reaction	
140.	Diels - Alder reaction will not take place with which	ch of the following reactants ?	
		/	
	1) and	2) and	
	1) and		
	~		
	/		
		and	
	3) and	4)	
		\backslash	
141.	In which of the following ortho/para substitution b	by an electrophile is very facile ?	
	1) Nitrobenzene 2) Phenol	3) Benzoic acid 4) Acetophenone	
142.	Which one of the following pairs of 2, 3-butane di		
			1

1) 2R, 3R and 2S, 3S3) 2S, 3S and 2S, 3R3) 2R, 3R and 2R, 3S4) 2S, 3S and 2R, 3S143. The two eneantiomers of secondary butyl chloride differ from each other in which one of the following

properties ?

1) Boiling point2) Specific rotation3) Density4) C -CI bond length

Date :

4) Ethyl acetate

Eamcet-2010 Engineering (Chemistry)

144. Identify the product (A) of the following reaction

С Н _ О	$-C_{2}H_{5}+CO-$	BF ₃ /150 ⁰ C	
$C_{2}n_{5} = 0$	$-c_{2}n_{5}+co-$	500am A	

1) Ethyl alcohol2) Ethyl propionate3) Ethanoic acid

145. Which one of the following gives yellow precipitate with iodine and NaOH solution

1) CH_3 – CHO 2) $C_6H_5COC_6H_5$ 3) HCHO 4) CH_3OH

146. Identify A, B and C in the following reactions

$$CH_{3} \xrightarrow{KCN} A \xrightarrow{Hydrolysis} B \xrightarrow{C_{2}H_{5}OH/H^{+}} C$$
$$A \qquad B \qquad C$$

1)
$$CH_3NC$$
 CH_3NHCH_3 $CH_3 - N - C_2H_5$
 $|$
 CH_2

2)	CH ₃ CN	CH ₃ CONH ₂	CH ₃ CO ₂ H
3)	CH ₃ CN	CH ₃ CO ₂ H ²	CH ₃ CO ₂ C ₂ H ₅
4)	CH ₃ CN	CH ₃ CO ₂ H	$(CH_3CO)_2O$

- 147. Reduction of nitrobenzene with Zn and alcoholic KOH solution results in the formation of the following compound
 - 1) Hydrazobenzene2) Azobenzene3) Aniline4) Phenyl hydroxyl amine

148. If the number average molecular weight and weight and weight average molecular weight of a polymer are 40,000 and 60, 000 respectively, the polydispersity index of the polymer will be

1) >12) <1</th>3) 14) Zero149. The AT/GC ratio in human beings is
(where A = adenine, T = thymine, G = Guanine, C = Cytosine)
1) 12) 1.523) 9.34) 2

- 150. Identify the non-narcotic analgesic from the following1) Diazepam2) Ibuprofer3) Formalin4) Terpineol
- 151. Which one of the following transitions of an electron in hydrogen atom emits radiation of the lowest wavelength ?

1) $n_2 = \infty \tan n_1 = 2$ 2) $n_2 = 4 \tan n_1 = 3$ 3) $n_2 = 2 \tan n_1 = 1$ 4) $n_2 = 5 \tan n_1 = 3$

152. Which one of the following conditions incorrect for a well behaved wave function (ϕ)?

```
    φ must be finite
    φ must be single valued 3) φ must be infinite
    φ must be continuous
    The electron affinity values of elements A, B, C and D are respectively -135, -60, -200 and -348 kJ mol<sup>-1</sup>.
The outer electronic configuration of element B is
```

1)
$$3s^2 3p^5$$
2) $3s^2 3p^4$ 3) $3s^2 3p^3$ 4) $3s^2 3p^{2|}$

154. Match the following

List I (Molecule	List II (Number of lone pairs on central atom)
A) NH ₃	I) Two
B) H ₂ o	II) Three
C) XeF ₂	III) Zero
D) CH ₄	IV) Four
	V) One

indiavidya.com											
Eamo	cet -20 10) Engine	eering (C	Chemisti			5				Date:
		А	В	С	D		А	В	С	D	
	1)	V	Ι	III	Ι	2)	III	Ι	II	V	
	2)	V	Ι	II	III	4)	Ι	V	III	IV	
155.	The rat	tio of an	nion radi	us to ca	tion radi	us of a	crystal i	s 10 : 9	.3. Then	, the coor	rdination number of the cation
	in the o	crystal i	s								
	1) 2			2)	4			3) 6			4) 8
156.	The nu	mber of	f molecu	ules of C	CO ₂ liber	rated by	the cor	nplete c	combusti	on of 0.1	gram atom of graphite in air
	is										
	1) 3.01	x 10 ²²		2)	6.02 x 1	023		3) 6.0	02×10^2	2	4) 3.01 x 10^{23}
157.	CH ₄ di	ffuses t	two tim	es faster	than a	gas X.	The nu	mber of	f molecu	ules prese	ent in 32 g of gas X is (N is
	Avoga	dro nur	nber)								
	1) N			2)	N			3) $\frac{N}{4}$			4) $\frac{N}{16}$
	1) N			2)	2			³⁾ 4			⁴⁾ 16
158.	If BaC	l ₂ ionize	es to an	extent of	of 80% i	n aqueo	ous solut	tion, the	e value o	of Van't H	loff factor is
	1) 2.6			2)	0.4			3) 0.8	3		4) 2.4
159.	X is a	non- v	olatile s	solute an	nd Y is	a volati	le solve	ent. The	e follow	ing vapo	ur pressures are observed by
	dissolv	ing X i	n Y								
	X/mol	lit ⁻¹		Y/I	nm of H	Ig					
	0.10				\mathbf{P}_1				-0	Y	
	0.25				P_2				0		
	0.01				P ₃			20			
	The co	rrect of	vapour	pressur	e is			>>	con		
	1) $P_1 <$	$P_{2} < P_{3}$	3	2)	$P_{3} < P_{2}$	< P ₁		3) P ₃	$< P_1 < I$	P ₂	4) $P_2 < P_1 < P_3$
160.											tances of sodium benzoate,
	hydroc	hloric	acid an	nd sodiu	m chlo	ride are	e 240, 3	349 an	d 229 o	hm ⁻¹ cn	n ² equiv ⁻¹ respectively. The
	equival	lent con	nductanc	e of bei	nzoic ac	ia in oh	m^{-1} cm ²	² equiv	¹ at the	same con	ditions is
	1) 80			2)	328			3) 36	0		4) 408

121) 3	122) 3	123) 2	124) 4	125) 1	126) 1	127) 2	128) 4	129) 3	130) 2
131) 3	132) 2	133) 3	134) 2	135) 4	136) 1	137) 3	138) 1	139) 3	140) 1
141) 2	142) 1	143) 2	144) 2	145) 1	146) 3	147) 1	148) 1	149) 2	150) 2
151) 3	152) 3	153) 3	154) 3	155) 4	156) 3	157) 2	158) 1	159) 4	160) 3

indiavidya. com

EAMCET-2010 ENGINEERING-MATHS

1.	Let $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}, \vec{b}$	$=2\vec{i}+3\vec{j}-\vec{k}$ and $\vec{c}=\lambda\vec{i}$ -	$+\vec{j}+(2\lambda-1)\vec{k}$. If \vec{c} par	allel to the plane containing
	\vec{a}, \vec{b} then $\lambda =$	U U		
	1) 0	2) 1	3) -1	4) 2
2.	If three unit vectors \vec{a} ,	\vec{b}, \vec{c} satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$	then the angle between \vec{a}	and \vec{b} is:
	1) $\frac{2\pi}{3}$	2) $\frac{5\pi}{6}$	3) $\frac{\pi}{3}$	4) $\frac{\pi}{6}$
3.	$\left(\vec{a}+2\vec{b}-\vec{c}\right)\cdot\left(\vec{a}-\vec{b}\right)\times\left(\vec{a}-\vec{b}\right)$	$\left(\vec{a}-\vec{b}-\vec{c}\right) =$		
	1) $-\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$	2) $2\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$	3) $3\left[\vec{a} \vec{b} \vec{c}\right]$	4) ₀
4.	$\vec{u} = \vec{a} - \vec{b}, \vec{v} = \vec{a} + \vec{b}, \vec{a} $	$\left =\left \vec{b}\right =2\Rightarrow\left \vec{u}\times\vec{v}\right =$		
	1) $2\sqrt{16 - (\vec{a}.\vec{b})^2}$	$2) \sqrt{16 - \left(\vec{a}.\vec{b}\right)^2}$	3) $2\sqrt{4 - (\vec{a}.\vec{b})^2}$	4) $\sqrt{4 - (\vec{a}.\vec{b})^2}$
5.	If the angle $ heta$ between t	he vectors $\vec{a} = 2x^2\vec{i} + 4x\vec{j} +$	\vec{k} and $\vec{b} = 7\vec{i} - 2\vec{j} + x\vec{k}$	is such that $90^{\circ} < \theta < 180^{\circ}$
	then x lies in the interv	al:		
	1) $\left(0,\frac{1}{2}\right)$	2) $\left(\frac{1}{2},1\right)$	3) $\left(1,\frac{2}{2}\right)$	$4)\left(\frac{1}{2},\frac{3}{2}\right)$
6.		_		f volume V and let P be the
	vertex opposite to O. T	$\text{'hen } \begin{bmatrix} \overrightarrow{AP} & \overrightarrow{BP} & \overrightarrow{CP} \end{bmatrix} =$		
-	1) 2V	2) 12V	3) $3\sqrt{3}V$	4) 0
7.		om and ther transferred t		e and 8 black balls. A ball is ed at random from B. The
	1) $\frac{14}{40}$	2) $\frac{15}{40}$	3) $\frac{16}{40}$	4) $\frac{17}{40}$
8.	If A _i (i = 1, 2, 3,	n) are n independent event	ts with $P(A_i) = \frac{1}{1+i}$ for	each i, then the probability
	that none of $\mathbf{A}_{\mathbf{i}}$ occurs i	is		
	1) $\frac{n-1}{n+1}$	2) $\frac{n}{n+1}$	3) $\frac{n}{n+2}$	4) $\frac{1}{n+1}$
9.	Suppose A and B are ty	wo events such that $P(A \cap B)$	$B) = \frac{3}{25} \text{ and } P(B-A) =$	$=\frac{8}{25}$. Then P (B) =
	1) $\frac{11}{25}$	2) $\frac{3}{11}$	3) $\frac{1}{11}$	4) $\frac{9}{11}$
10.		variable X follows Poisson		= P(X = 2) then $P(X = 5) =$
	1) $\frac{2}{3}e^{-2}$	2) $\frac{3}{4}e^{-2}$	3) $\frac{4}{15}e^{-2}$	4) $\frac{7}{8}e^{-2}$

X7

1.

Eamcet-2010 Engineering (Maths)

The product of the perpendicular distances from any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ to its 26.

asymptotes is

1)
$$\frac{a^2b^2}{a^2-b^2}$$
 2) $\frac{a^2b^2}{a^2+b^2}$ 3) $\frac{a^2+b^2}{a^2b^2}$ 4) $\frac{a^2-b^2}{a^2b^2}$

Page No.2

Fam	cet-2010Engineering (Mat	Indiavidy	a.com	
27.		= 0, x - y + k = 0 are conju	ugate with respect to the	parabola y ² = 8x, then k =
	1) 10	2) $\frac{7}{2}$	3) -12	4) -2
28.	The length of the latus r	vectum of the conic $\frac{5}{r} = 2 + \frac{1}{r}$	$3\cos\theta + 4\sin\theta$ is	
29.	1) 2 The point dividing the j	2) 3 bin of (3, -2, 1) and (-2, 3, 1	3) 4 11) in the ratio 2 : 3 is	4) 5
30.	1) $(1, 1, 4)$	2) $(1, 0, 5)$ f the equation $x^3 - 6x^2 + 11x$		4) $(0, 6, -1)$
30.		f the equation $x^3 - 6x^2 + 11x$		
	and $c = (\alpha + \beta)(\beta + \gamma)$ 1) a < b < c	$(\gamma + \alpha)$, then the correct ir 2) b < a < c	$\begin{array}{c} \textbf{a} \textbf{b} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} c$	$\begin{array}{l} \text{wing is} \\ \text{4) } c < a < b \end{array}$
31.	A plane meets the coord	inate axes at A, B, C so tha	· · · · · · · · · · · · · · · · · · ·	· ·
32.		e is 2) 4x + 2y + z = 12 a diameter of the sphere x ²		
	of the diameter is	2) (4, 9, 5)	3) (-8, -15, 1)	
33.	1) (4, 9, -1) $\lim_{x \to 0} \frac{\tan x - \sin x}{x^2} =$			
	$x \rightarrow 0$ x^2			
	1) 0	2) 1	3) $\frac{1}{2}$	4) $-\frac{1}{2}$
		$\int \frac{1+3x^2-\cos 2x}{2x}$	for x = 0	
34.	If $f: R \to R$ defined by	$f(x) = \begin{cases} x^2 \\ x^2 \end{cases},$	is continuous a	t x = 0, then k =
	1) 1	2) 1 $f(x) = \begin{cases} \frac{1+3x^2 - \cos 2x}{x^2}, \\ k \end{cases}$ 2) 5 	3) 6	4) 0
35.	$f(x) = (\cos x) (\cos 2x) \dots$	$\dots (\cos nx) \Rightarrow f'(x) +$	$-\sum_{n=1}^{n} (r \tan rx) f(x) =$	
	1) f(x)	2) 0	r=1 3) -f(x)	4) 2f(x)
36.	1) f(x) $y = \cos^{-1}\left(\frac{a^2 - x^2}{a^2 + x^2}\right) + \sin^2 \frac{1}{a^2 + x^2}$	$n^{-1}\left(\frac{2ax}{a^2+x^2}\right) \Rightarrow \frac{dy}{dx} =$		
	1) $\frac{a}{x^2 + a^2}$	2) $\frac{2a}{x^2 + a^2}$	3) $\frac{4a}{x^2 + a^2}$	4) $\frac{a^2}{x^2 + a^2}$
37.	$f(x) = \sin x + \cos x \Rightarrow .$	$f\left(\frac{\pi}{A}\right)f^{(iv)}\left(\frac{\pi}{A}\right) =$		
	1) 1	2) 2	3) 3	4) 4
38.	$y = \sin\left(m\sin^{-1}x\right) \Rightarrow \left(1 + \frac{1}{2}\right)$	$-x^2\big)y_2-xy_1=$	(Here $\mathbf{y}_{\mathbf{n}}$ denotes $\frac{d^n y}{dx^n}$)	
39.	1) m ² y The height of the cone o	2) –m ² y f maximum volume inscribe	3) 2m ² y ed in a sphere of radius R	4) $-2m^2y$ a is
	1) $\frac{R}{3}$	2) $\frac{2R}{3}$	3) $\frac{4R}{3}$	4) $\frac{4R}{\sqrt{3}}$
40.	The longest distance of t	the point (a, 0) from the cu	rve $2x^2 + y^2 = 2x$ is	
	1) 1 + a	2) $ 1-a $	3) $\sqrt{1-2a+2a^2}$	4) $\sqrt{1-2a+3a^2}$

Eamcet-2010 Engineering (Maths) 41. A variable triangle ABC is inscribed in a circle of diameter x units. At a particular instant, the rate of

change in side a is $\frac{x}{2}$ times the rate of change in its opposite angle A. Then A =

1)
$$\frac{\pi}{2}$$
 2) $\frac{\pi}{3}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{6}$
42. $u = \sin^{-1}\left(\frac{x^{4} + y^{4}}{x + y}\right) \Rightarrow x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$
1) $3u$ 2) $4u$ 3) $3\sin u$ 4) $3\tan u$
43. $\int \frac{7x^{5} + 8x^{7}}{(1 + x + x^{5})^{2}} dx = f(x) + c \Rightarrow f(x) =$
1) $\frac{x^{8}}{1 + x + x^{5}}$ 2) $28\log(1 + x + x^{8})$ 3) $\frac{1}{1 + x + x^{8}}$ 4) $\frac{-1}{1 + x + x^{5}}$
44. If $f_{n}(x) = \log \log \log \log$ log ($3\log is repeated n-times$), then $\int (xf_{n}(x)f_{n}(x).....f_{n}(x))^{-1} dx =$
1) $f_{n+1}(x) + c$ 2) $\frac{f_{n+1}(x)}{n+1} + c$ 3) $nf_{n}(x) + c$ 4) $\frac{f_{n}(x)}{n} + c$
45. $\int (1 - \cos x)\cos ec^{3}x dx = f(x) + c \Rightarrow f(x) =$
1) $\tan \frac{x}{2}$ 2) $\cot \frac{x}{2}$ 3) $2\tan^{3}x$ 3) $\frac{1}{2}\tan \frac{x}{2}$
46. If $J_{n} = \int_{0}^{\frac{\pi}{2}} \tan^{n} x dx$, then $I_{2} + I_{4}, I_{4} + I_{4} + I_{4}, I_{4} + I_{4}, I_{4} + I_{4} + I_{4}, I_{4} + I_{4} + I_{4}, I_{4} + I_{$

Page No.4

Eamcet-2010 Engineering (Maths) Let R denote the set of all real numbers and R⁺ denote the set of all positive real numbers. For the 52. subsets A and B of R define $f: A \to B$ by $f(x) = x^2$ for $x \in A$. Observe the two lists given below: List I List II (i) f is one-one and onto if (a) $\mathbf{A} = \mathbf{R}^+, \mathbf{B} = \mathbf{R}$ (ii) f is one-one but not onto if **(b)** A = B = R(iii) f is onto but not one-one if (c) $A = R, B = R^+$ (iv) f is neither one-one nor onto if (d) $A = B = R^+$ The correct matching of List I to List II is 1) a b с d 2) d b a с 3) d 4) d b а b с а с The numbers $a_n = 6^n - 5n$ for n = 1,2,3, when divided by 25 leave the remainder : 53. 2) 7 3) 3 4) 1 54. Let $n = 1! + 4! + 7! + \dots + 400!$. Then ten's digit of n is : 1) 12) 63) 2 4) 7 Let $a_n = \frac{10^n}{n!}$ for n = 1,2,3, Then the greatest value of n for which a_n is the greatest is : 55. 2) 20 3) 10 4) 8 A polygon has 54 diagonals. Then the number of its sides is : 56. 1)72) 9 3) 10 4) 12 $(1 + 2\mathbf{x} + 3\mathbf{x}^2)^{10} = a_0 + a_1 x + a_2 x^2 + \dots + a_{20} x^{20} \Rightarrow \frac{a^2}{a_1}$ 57. 3) 10 2) 21 1) 10.5 4) 5.5 For $|x| < \frac{1}{5}$, the coefficient of x³ in the expansion of (1-5x)(1-4x) is : 58. 1) 369 2) 370 4) 372 $\frac{3x^2 + x + 1}{(x-1)^4} = \frac{a}{(x-1)} + \frac{b}{(x-1)^2} + \frac{c}{(x-1)^2}$ $\overline{(-1)^4} \Rightarrow$ 59. $\begin{array}{c|c} 0 & 3 \\ 7 & 5 \end{array}$ 1) $\begin{bmatrix} 3 & 7 \\ 5 & 0 \end{bmatrix}$ **60**. $\log_4 2 - \log_8 2 + \log_{16} 2 - \dots =$ 1) e^{2} 2) $\log_{2} 2$ 3) $1 + \log_{2} 3$ 4) $1 - \log_2 2$ For $x \in R$, the least value of $\frac{x^2 - 6x + 5}{x^2 + 2x + 1}$ is : 61. 2) $-\frac{1}{2}$ 3) $-\frac{1}{4}$ 4) $-\frac{1}{2}$ 1) -1 $\left\{ x \in R : \frac{14x}{x+1} - \frac{9x-30}{x-4} < 0 \right\} =$ 62. 1)(-1, 4)2) $(1,4) \cup (5,7)$ (1,7)4) $(-1, 1) \mid (4,6)$ The condition that the roots of $x^3 - bx^2 + cx - d = 0$ are in geometric progression is : **63**. 1) $c^3 = b^3 d$ 2) $c^2 = b^2 d$ 3) $c = bd^3$ 4) $c = bd^2$ Let $\alpha \neq 1$ be a real root of the equation $x^3 - ax^2 + ax - 1 = 0$, where $a \neq -1$ is a real number. Then **64**. a root of this equation, among the following, is : 1 2

1)
$$\alpha^2$$
 2) $-\frac{1}{\alpha}$ 3) $\frac{1}{\alpha}$ 4) $-\frac{1}{\alpha}$

Eamcet-2010 Engineering (Maths)

Eamcet-2010 Engineering (Maths)

1

1

76.
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$

 $\Rightarrow 1 - xy - yz - zx =$
1) 1 2) 0 3) -1 4) 2
77. $\tanh^{-1} x = a \log\left(\frac{1+x}{1-x}\right), |x| < 1 \Rightarrow a =$
1) 1 2) 2 3) $\frac{1}{2}$ 4) $\frac{1}{4}$
78. If $\Delta = a^2 - (b-c)^2$, is the area of the triangle ABC, then $\tan A =$
1) $\frac{1}{16}$ 2) $\frac{8}{15}$ 3) $\frac{3}{4}$ 4) $\frac{4}{3}$

In a traingle ABC, C = 90°. Then $\frac{a^2 - b^2}{a^2 + b^2} =$ 79.

- 1) $\sin(A + B)$ 2) sin (A – B) 3) $\cos (A + B)$ 4) cos (A – B) 80. The sum of angles of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it is 90°. Then the height of the tower is :
 - 3) \sqrt{ab} 2) ab^{2} 1) a^2b 4) *ab*

) 1 2) 1 3) 3 4) 1 5) 1 6) 1 7) 4 8) 4 9) 1 10) 3																		
1)	1	2)	1	3)	3	4)	1	5)	1	6)	1	7)	4	8)	4	9)	1	10)	3
11)	2	12)	3	13)	1	14)	1	15)	2	16)	4	17)	1	18)	2	19)	3	20)	3
21)	1	22)	2	23)	3	24)	3	25)	3	26)	2	27)	3	28)	4	29)	2	30)	2
31)	2	32)	2	33)	1	34)	2	35)	2	36)	3	37)	2	38)	2	39)	3	40)	3
41)	2	42)	4	43)	1	44)	1	45)	1	46)	3	47)	4	48)	3	49)	2	50)	4
51)	4	52)	3	53)	4	54)	2	55)	3	56)	4	57)	1	58)	1	59)	2	60)	4
61)	4	62)	4	63)	1	64)	3	65)	2	66)	1	67)	2	68)	1	69)	4	70)	2
71)	3	72)	1	73)	2	74)	1	75)	1	76)	2	77)	3	78)	2	79)	2	80)	3

EAMCET-2010 ENGINEERING-PHYSICS

A launching vehiclecarrying an artificial satellite of mass 'm' is set for launch on the surface of the earth of 81. mass 'M' and radius 'R'. If the satellite is intended to move in a circular orbit of radius 7R, the minimum energy required to be spent by the launching vehicle on the satellite is (Gravitational constant = G) 2) $\frac{13GMm}{14R}$ 3) $\frac{GMm}{7R}$ 1) $\frac{GMm}{R}$ 4) $\frac{GMm}{14R}$ The displacements of two particles of same mass executing SHM are represented by the equations 82. $x_1 = 4 \sin\left(10t + \frac{\pi}{6}\right)$ and $x_2 = 5 \cos(\omega t)$. The value of ' ω ' for which the energy of both the particles remain same is 2) 6 unints 1) 16 units 3) 4 units 4) 8 units Match the following 83. List - I List - II A) Hooke's law I) Tangential strain II) Temporary loss of elastic property B) Shearing strain C) Bulk strain III) Elastic Limit D) Elastic Fatigue IV) 3 times the linear strain С Α B <u>C</u> D D A I Π 1) Π Ι IV III 2) Ш III 3) III Ι IV II 4) Ľ IV The excess pressure inside a spherical soap bubble of radius 1 cm is balanced by a column of oil (Sp. gr.= 84. 0.8), 2 mm high, the surface tension of the bubble is 2) 0.0392 N/m 1) 3.92 N/m 3) 0.392 N/m 4) 0.00392 N/m Water from a tap emerges vertically downwards with initial velocity 4 ms⁻¹. The cross - sectional area of the 85. tap is A. The flow is steady and pressure is constant throughout the stream of water. The distance h vertically below the tap, where the cross - sectional area of the stream becomes $\left(\frac{2}{3}\right)A$, is $(g = 10 \text{ ms}^2)$ 1) 0.5 m 2) 1 m 3) 1.5 m 4) 2.2 m A bimetallic strip is formed out of two identical strips, one of copper and the other of brass . The coefficients 86. of linear expansion of the two mwtals are α_c and α_{B} . On heating, the temperature of the strip increases by ΔT and the strip bonds to form an arc of radius R. Then R is proportional to 4) $\frac{1}{\sqrt{\Delta T}}$ 2) $\frac{1}{\Delta T}$ 3) $\sqrt{\Delta T}$ 1) ΔT 87. Three rods of equal lengths are joined to form an equilateral triangle ABC. D is the mid - point of AB. The coefficient of linear expansion is α_1 for material of rod AB and α_2 for material of rods AC and BC. If the

1) $\alpha_1 = 2\alpha_2$ 2) $\alpha_1 = 4\alpha_2$ 3) $\alpha_1 = 8\alpha_2$ 4) $\alpha_1 = \alpha_2$

distance DC remains constant for small changes in temperature, then

Eamcet-2010 Engineering (Physics)

88. An ideal gas expands isothermally from valume V_1 to volume V_2 . it is then compressed to the original volume V_1 adiabaticaly. If P_1 , P_2 and W represent the initial pressure, final pressure and the net work done by the gas respectively during the entire process, then

1)
$$P_1 > P_2$$
, $W = 0$ 2) $P_1 > P_2$, $W > 0$ 3) $P_2 > P_1$, $W > 0$ 4) $P_2 > P_1$, $W < 0$

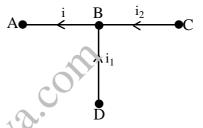
89. 3 moles of an ideal monoatomic gas performs ABCDA cyclic process as shown infigure below. The gas temperatures are $T_A = 400$ K, $T_B = 800$ K, $T_C = 2400$ K and $T_D = 1200$ K. The work done by the gas is (approximately) (R = 8.314 J/mole K)

- 1) 10 J
- 2) 20 J
- 3) 40 J
- 4) 100 kJ

P B C A D T

- 90. Three rods AB, BC and BD made of the same material and having the same cross- section have been joined as shown in the figure . The ends A, C and D are held at temperatures of 20°C, 80°C and 80°C respectively. If each rod is of same length, then the temperature at the junction B of the three rods is
 - 1) 90°C
 - 2) 60° C
 - 3) 40°C
 - 4) 30°C
- 91. An organ pipe P_1 , closed at one end and containing a gas of density ρ_1 is vibrating inits first harmonic. Another organ pipe P_2 , open at both ends ans containing a gas of density ρ_2 is vibrating in its third harmonic. Both the pipes are in resonance with a given tuning fork. If the compressibility of gases is equal in both pipes, the ratio of the lengths of P_1 and P_2 is (assume the given gases to be monoatomic)
 - 1) 1/3 2) 3 3) $\frac{1}{6}\sqrt{\frac{\rho_1}{\rho_2}}$ 4) $\frac{1}{6}\sqrt{\frac{\rho_2}{\rho_1}}$

92. A sonometer wire has a length of 114 cm, between two fixed ends. Where should two bridges be placed so as to divide the wire into three segments (in cm) whose fundamental frequencies are in the ratio 1 : 3 : 4 ?
1) l₁, l₂, l₃ = 18, 24, 72 2) l₁, l₂, l₃ = 24, 18, 72 3) l₁, l₂, l₃ = 72, 18, 24 4) l₁, l₂, l₃ = 72, 24, 18


93. In an optical fibre, core and cladding were made with materials of refractive indices 1.5 and 1.414 respectively. To observe total internal reflection, what will be the range of incident angle with the axis of optical fibre ?

1) $0^{0} - 60^{0}$ 2) $0^{0} - 48^{0}$ 3) $0^{0} - 30^{0}$ 4) $0^{0} - 82^{0}$

94. A ray of light passes through an equilateral prism such that the angle of incidence is equal to the angle of emergence and each one is equal to 3/4th the angle of prism. The angle of deviation is
1) 45°
2) 39°
3) 20°
4) 30°

95. The distance between field lens and eye lens in Ramsden eyepiece is 4 cm. Then the distance of the cross - wires from the eye lens is

1) 1.5 cm 2) 1.0 cm 3) 5.0 cm 4) 5.5 cm

Eamcet-2010 Engineering (Physics)

	5 5 5	, , ,		
96.	Two coherent sources wh	hose intensity ratio is 64 : 1	produce interference fringe	es. The ratio of intensities of
	maxima and minima is			
	9:7	2) 8 : 1	3) 81 : 49	4) 81 : 7
97.	The frequency of vibration	on in a vibration magnetome	ter of the combination of t	wo bar magnets of magnetic
	moments \mathbf{M}_1 and \mathbf{M}_2 is 6	5 Hz when like poles are tied	and it is 2 Hz when the u	nlike poles are tied together,
	then the ratio $\mathbf{M}_1 : \mathbf{M}_2$ is			
	1) 4 : 5	2) 5 : 4	3) 1 : 3	4) 3 : 1
98.	A short magnetic needl	e is pivoted in a uniform n	nagnetic field of inductio	n 1T. Now, simultaneously
	another magnetic field of	of induction $\sqrt{3}T$ is applied	d at right angles to the fir	st field; the needle deflects
	through an angle ' θ ' where the through the through the three th	nose value is		
	1) 30 ⁰	2) 45°	3) 90°	4) 60 ⁰
99.	The potential difference	between two parallel plates	is 10^4 volts. If the plates	are separated by 0.5 cm the
	force on an electron bet	ween the plates is		
	1) 32 x 10^{-13} N	2) 0.32 x 10^{13} N	3) 0.032 x 10^{-13} N	4) 3.2 x 10 ⁻¹³ N
100.	Two capacitors of capacitors	ities $1 \ \mu F$ and $C \ \mu F$ are contained on the second	onnected in series and the	combination is charged to a
	potential difference of 12	20V. If the charge on the con	mbination is $80\mu C$, the er	nergy stored in the capacitor
	of capacity C in micro J	oules is		
	1) 1800	2) 1600	3) 14400	4) 7200
101.	6Ω and 12Ω resistors a	are connected in parallel. This	s combination is connected	in series with a 10V battery
	and 6Ω resistor. What i	s the potential difference bet	ween the terminals of the	12Ω resistor ?
	1) 4 V	2) 16 V	3) 2 V	4) 8 V
102.	Charge passing through	a conductor of cross - sec	tion area $A = 0.3 \text{ m}^2$ is gi	ven by $q = 3t^2 + 5t + 2$ in
	coulombs, where 't' is in	seconds. What is the value of	of drift velocity at $t = 2$ see	c. Given $n = 2 \times 10^{25} / m^3$
		2) 1.77 x 10 ⁻⁵ m/ sec		
103.	The Thermo e.m.f of a the	hermo-couple is given by, ε	$= aT + bT^2$, where $a/b=-2$	200°C. If the cold function is
	kept at 30°C, then the in	version temperature is (ε in	volts, T is in centigrade)	
	1) 103 K	2) 143 K	3) 333 K	4) 443 K
104.	The intensity of the ma	gnetic induction field at the	e center of a single turn c	circular coil of radius 5 cm
	carrying current of 0.9 A			
	1) $36\pi \times 10^{-7} \mathrm{T}$	2) $9\pi \times 10^{-7} \mathrm{T}$	3) $36\pi \times 10^{-6}$ T	4) $9\pi \times 10^{-6} \mathrm{T}$
105.	A capacitor of capacity ().1 μ F connected in series to	a resistor of 10 M_{Ω} charge	ged to a certain potential and
	then made to discharge t	through t resistor. The time is	n which the potential will	take to fall to half its origin
	value is (Given $\log_{10} 2$ =	= 0.3010)		
	1) 2 sec	2) 0.693 sec	3) 0.5 sec	4) 1.0 sec
106.	The time constant of inc	ductance coil is 3m sec. Wh	en a 90 $_{\Omega}$ resistance is joi	ned in series, then the time
	constant becomes 0.5m	sec. The inductance and the	resistance of the coil are	
	1) 5 4 II 10 a	0 14 II 40 \circ	$2)$ 40 II 14 α	4) 14 II (0 \circ

1) 54 mH, 18_{Ω} 2) 14 mH, 42_{Ω} 3) 42 mH, 14_{Ω} 4) 14 mH, 60 $_{\Omega}$

Eamcet-2010 Engineering (Physics)

107.	In Thomson's experiment	t to determine $\frac{e}{m}$ of an elect	tron, it is found that an ele	ectron beam having a kinetic
	energy of 4505 eV rema	ins undeflected, when subjec	ted to crossed electric and	I magnetic fields. If $E = 10^3$
	Vm ⁻¹ , the value of 'B' is	(mass of the electron is 9.1	x 10 ⁻³¹ kg)	
	1) $2.5 \times 10^{-3} \text{Wb} \text{m}^{-2}$	2) $5.0 \times 10^{-4} \text{Wb} \text{m}^{-2}$	3) $2.5 \times 10^{-4} \text{Wb} \text{m}^{-2}$	4) $1.0 \times 10^{-4} \mathrm{Wb} \mathrm{m}^{-2}$
108.	Photoelectric emission i	s observed from a metallic s	surface for frequencies v_1	and v_2 of the incident light
	$(v_1 > v_2)$. If the maximum	values of kinetic energy of t	the photoelectrons emitted	d in the two cases are in the
		hold frequency of the metalli		
	1) $(v_1 - v_2)/(n-1)$	2) $(nv_1 - v_2)/(n-1)$	3) $(nv_2 - v_1) / (n - 1)$	4) $(v_1 - v_2)/n$
109.	Three particles α -partic	le, proton and deuteron are a	accelerated by the sar pote	ential difference. The veloci-
	ties of them are in the ra	tio		
	1) $1:\sqrt{2}:1$	2) $\sqrt{2}$:1:1	3) 1:2:4	4) 4:2:1
110.	A transistor having a β	equal to 80 has a change in	base current of 250 $\mu{\rm A}$	then the change in collector
	current is			
	1) 20,000 mA	2) 200 mA	3) 2000 mA	4) 20 mA
111.	If the force is given by F	$F = at + bt^2$ with t as time. The	ne dimensions of a and b a	re
	1) MLT ⁻⁴ ,MLT ⁻²	2) MLT ⁻³ ,MLT ⁻⁴		
112.		r of equal magnitude and θ is	s the angle between them.	The angle between \vec{A} or \vec{B}
	with their resultant is		0	
113	1) $\theta/4$	2) $\theta/2$ round of a circular track of τ	3) 29 actives R in 40 sec. What we	4) 0 $\frac{1}{100}$
115.	end of 2 min 20 seconds	. ?		
	1) 7R	2) 2R	3) 2π R	4) 7 π R
114.	A hall is falling fusally f	s a a a server ∧ "U" a		ground its velocity is V It
			hes 10m height from the	
		and loses 50% of us energy		
	collides with the ground is	and loses 50% of us energy	and rises back to height of	f 10 m. Then the velocity V_0
	collides with the ground is 1) 7 m/s	and loses 50% of us energy a 2) 10 m/s	and rises back to height of 3) 14 m/s	 f 10 m. Then the velocity V₀ 4) 16 m/s
115.	collides with the ground is 1) 7 m/s	and loses 50% of us energy	and rises back to height of 3) 14 m/s	 f 10 m. Then the velocity V₀ 4) 16 m/s
115.	collides with the ground is 1) 7 m/s A bomb moving with ve	and loses 50% of us energy 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s	and rises back to height of 3) 14 m/s sec explode into two piece	 f 10 m. Then the velocity V₀ 4) 16 m/s es of mass ratio 1 : 4. After
115.	collides with the ground is 1) 7 m/s A bomb moving with ve	and loses 50% of us energy 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s	and rises back to height of 3) 14 m/s sec explode into two piece	 f 10 m. Then the velocity V₀ 4) 16 m/s
115.	 collides with the ground is 1) 7 m/s A bomb moving with vere explosion the smaller propriete after explosion is 	and loses 50% of its energy 2 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc	and rises back to height of 3) 14 m/s sec explode into two piece ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m	 f 10 m. Then the velocity V₀ 4) 16 m/s es of mass ratio 1 : 4. After n/sec. The velocity of larger
115.	 collides with the ground is 1) 7 m/s A bomb moving with vere explosion the smaller propriete after explosion is 	and loses 50% of us energy 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s	and rises back to height of 3) 14 m/s sec explode into two piece ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m	 f 10 m. Then the velocity V₀ 4) 16 m/s es of mass ratio 1 : 4. After n/sec. The velocity of larger
	collides with the ground is 1) 7 m/s A bomb moving with ver- explosion the smaller pi- piece after explosion is 1) $45\hat{j}-35\hat{k}$	and loses 50% of its energy 2 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc	and rises back to height of 3) 14 m/s sec explode into two piece ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m 3) $45\hat{k} - 35\hat{j}$	f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After a/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$
	collides with the ground is 1) 7 m/s A bomb moving with ver- explosion the smaller pi- piece after explosion is 1) $45\hat{j}-35\hat{k}$	and loses 50% of its energy is 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and	and rises back to height of 3) 14 m/s sec explode into two piece ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m 3) $45\hat{k} - 35\hat{j}$	f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After a/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$
	collides with the ground is 1) 7 m/s A bomb moving with ver- explosion the smaller pi- piece after explosion is 1) $45\hat{j}-35\hat{k}$ A body of mass $m_1 = 4$ kinetic energy of centre	and loses 50% of its energy is 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and of mass is	and rises back to height of 3) 14 m/s sec explode into two piece ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m 3) $45\hat{k} - 35\hat{j}$ other body of mass m ₂ = 2	f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After a/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$ 2 kg moves at $10\hat{i}$ m/s. The
116.	collides with the ground is 1) 7 m/s A bomb moving with ver- explosion the smaller pi- piece after explosion is 1) $45\hat{j}-35\hat{k}$ A body of mass m ₁ = 4 kinetic energy of centre 1) $\frac{200}{3}$ J	and loses 50% of its energy is 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and of mass is 2) $\frac{500}{3}$ J	and rises back to height of 3) 14 m/s sec explode into two piece ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m 3) $45\hat{k} - 35\hat{j}$ other body of mass m ₂ = 2 3) $\frac{400}{3}$ J	f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After a/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$ 2 kg moves at $10\hat{i}$ m/s. The 4) $\frac{800}{3}$ J
116.	collides with the ground is 1) 7 m/s A bomb moving with ver- explosion the smaller pi- piece after explosion is 1) $45\hat{j}-35\hat{k}$ A body of mass $m_1 = 4$ kinetic energy of centre 1) $\frac{200}{3}$ J A ball falls from a height	and loses 50% of its energy is 2) 10 m/s clocity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and of mass is	and rises back to height of 3) 14 m/s sec explode into two piece ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m 3) $45\hat{k} - 35\hat{j}$ other body of mass m ₂ = 2 3) $\frac{400}{3}$ J sing the floor. The coefficient	f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After a/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$ 2 kg moves at $10\hat{i}$ m/s. The 4) $\frac{800}{3}$ J

1)
$$\frac{(1-e^2)h}{e^2}$$
 2) $\frac{(1+e^2)h}{e^2}$ 3) $\left(\frac{1+e^2}{1-e^2}\right)h$ 4) $\frac{e^2h}{1-e^2}$

Page No.4

Eamcet-2010 Engineering (Physics)

118. An object takes n times as much time as to slide down a 45° rough inclined plane as it takes to slide down a perfectly smooth inclined plane of the same inclination. The coefficient of kinetic friction between the object and the rough incline is given by

1)
$$\left(1-\frac{1}{n^2}\right)$$
 2) $\left(\frac{1}{1-n^2}\right)$ 3) $\sqrt{1-\frac{1}{n^2}}$ 4) $\sqrt{1+\frac{1}{n^2}}$

119. The moment of Inertia of a disc, of mass M and radius R, about an axis which is a tangent and parallel to its diameter is

1)
$$\frac{1}{2}$$
MR² 2) $\frac{3}{4}$ MR² 3) $\frac{1}{4}$ MR² 4) $\frac{5}{4}$ MR²

- 120. A fly-wheel of mass 25 kg has a radius of 0.2m. It is making 240 rpm. What is the torque necessary to bring to rest in 20 sec ?
 - 1) 2π Nm 2) 0.2π Nm 3) $\frac{2}{\pi}$ Nm 4) 4π Nm

indiavidya. com

81) 2	82) 4	83) 3	84) 2	85) 2	86) 2	87) 2	88) 4	89) 2	90) 2
91) 4	92) 4	93) 3	94) 4	95) 4	96) 3	97) 2	98) 4	99) 4	100) 2
101) 1	102) 2	103) 4	104) 1	105) 2	106) 1	107) 3	108) 2	109) 1	110) 4
111) 2	112) 2	113) 2	114) 3	115) 1	116) 3	117) 3	118) 1	119) 4	120) 2

indiavidya. com